	N OPERAT	ING SYSTEMS		
[As per Choice Bas	ed Credit Syst	em (CBCS) scheme]		
(Effective from	the academic y	rear 2016 -2017)		
	SEMESTER			
Subject Code	16SCS11	IA Marks	20	0
Number of Lecture Hours/Week	04	Exam Marks	8	0
Total Number of Lecture Hours	50	Exam Hours	0.	3
	CREDITS -	04		
Course objectives: This course will enab	ble students to			
• Define the fundamentals of Op				
• Explain distributed operating s			e Mutua	al exclusion
algorithms, Deadlock detection algo			•,	
Illustrate distributed resource	Ũ	•	ne algor	rithms for
implementation of distributed share	U		0	initial for
 Identify the components and m 	•	•		Systems
Module 1	lanagement aspe			Teaching
Module 1				Hours
Operating System Overview, Proce	se description	& Control: Operating	System	10 Hours
Objectives and Functions, The Evolution				10 110015
Developments Leading to Modern Ope				
Traditional UNIX Systems, Modern UN				
Process Description, Process Control,				
Issues.	Execution of t	ne operating system, s	county	
Module 2				
Threads, SMP, and Microkernel,	Virtual Mor	orv Processes and Th	reads	10 Hours
Symmetric Multiprocessing (SMP), Mi		•		10 110015
Hours Management, Linux Process and		indows visia rincad and	DIVIL	
	d Thread Mana		ontrol	
		gement. Hardware and C		
Structures, Operating System Software		gement. Hardware and C		
Structures, Operating System Software Memory Management, Summary		gement. Hardware and C		
Structures, Operating System Software Memory Management, Summary Module 3	e, UNIX Memor	gement. Hardware and C y Management, Windows	Vista	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche	e, UNIX Memor	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T	Vista	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX	e, UNIX Memor duling: Multipro PreclsSI) Sche	gement. Hardware and C y Management, Windows occessor Scheduling, Real-T eduling, Windows Vista	Vista Fime Hours	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu	e, UNIX Memor duling: Multipro PreclsSI) Sche	gement. Hardware and C y Management, Windows occessor Scheduling, Real-T eduling, Windows Vista	Vista Fime Hours	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock	e, UNIX Memor duling: Multipro PreclsSI) Sche	gement. Hardware and C y Management, Windows occessor Scheduling, Real-T eduling, Windows Vista	Vista Fime Hours	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock Module 4	e, UNIX Memor duling: Multipro PreclsSl) Sche ited Global State	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc	Vista Fime Hours clusion,	
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock Module 4 Embedded Operating Systems: Em	e, UNIX Memor eduling: Multipro PreclsSI) Sche uted Global State	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-7 eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb	Vista Fime Hours clusion, edded	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con	e, UNIX Memor duling: Multipro PreclsSI) Sche uted Global State nbedded Systems mputer Security	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack	Vista Fime Hours clusion, edded s, and	
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O	e, UNIX Memor duling: Multipro PreclsSI) Sche uted Global State nbedded Systems mputer Security	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack	Vista Fime Hours clusion, edded s, and	
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5	e, UNIX Memor eduling: Multipro PrecIsSI) Sche Ited Global State nbedded Systems mputer Security Overview, Viruse	gement. Hardware and C y Management, Windows occessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl	Vista Fime Hours clusion, edded s, and cits.	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribu Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S	e, UNIX Memor eduling: Multipro PreclsSI) Sche ated Global State abedded Systems mputer Security Overview, Viruse ervices, Daemor	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-7 eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth	Vista Fime Hours clusion, edded s, and kits. ntrol in	
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State nbedded Systems mputer Security Overview, Viruse ervices, Daemor anagement, MO	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth ns, Starting the Kernel, Co DULE Organization, MO	Vista Fime Hours clusion, edded s, and cits. Introl in DULE	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process	e, UNIX Memor eduling: Multipro PreclsSl) Sche ited Global State ibedded Systems mputer Security Overview, Viruse services, Daemor anagement, MO and Resource	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth ns, Starting the Kernel, Co DULE Organization, MO Management, Running P	Vista Fime Hours clusion, edded s, and cits. ntrol in DULE rocess	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse Services, Daemor anagement, MO and Resource and Synchroniz	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth is, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M	Vista Fime Hours clusion, edded s, and kits. Introl in DULE rocess lemory	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribue Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space,	e, UNIX Memor eduling: Multipro PreclsSI) Sche ited Global State nbedded Systems mputer Security Overview, Viruse Eervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Management	Vista Fime Hours clusion, edded s, and cits. ntrol in DULE rocess lemory nt. The	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State nbedded Systems mputer Security Overview, Viruse ervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault fuction, The N	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th	Vista Fime Hours clusion, edded s, and cits. ntrol in DULE rocess femory nt. The meads,	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Cor Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse ervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault duction, The N terrupts and Ex	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th cceptions, The NT exec	Vista Fime Hours clusion, edded s, and cits. ntrol in DULE rocess lemory nt. The nreads, utive ,	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse Gervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault fuction, The N terrupts and Ex Ianager, Virtual	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th cceptions, The NT execc Memory Manager, I/o Ma	Vista Fime Hours clusion, edded s, and kits. ntrol in DULE rocess lemory nt. The mreads, utive , unager,	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M The cache Manager Kernel local proced	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse Gervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault fuction, The N terrupts and Ex Ianager, Virtual	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th cceptions, The NT execc Memory Manager, I/o Ma	Vista Fime Hours clusion, edded s, and kits. ntrol in DULE rocess lemory nt. The mreads, utive , unager,	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Cor Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M The cache Manager Kernel local proced	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse Gervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault fuction, The N terrupts and Ex Ianager, Virtual	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th cceptions, The NT execc Memory Manager, I/o Ma	Vista Fime Hours clusion, edded s, and kits. ntrol in DULE rocess lemory nt. The mreads, utive , unager,	10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M The cache Manager Kernel local proceed Course Outcomes The students should be able to:	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse iervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault duction, The N terrupts and Ex Ianager, Virtual dure calls and IP	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th ceptions, The NT exect Memory Manager, I/o Ma C, The native API, subsys	Vista Fime Hours clusion, edded s, and kits. ntrol in DULE rocess femory nt. The mreads, utive , unager, tems.	10 Hours 10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M The cache Manager Kernel local proceed Course Outcomes The students should be able to: • Demonstrate the Mutual exclu	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State ibedded Systems mputer Security Overview, Viruse iervices, Daemor anagement, MO and Resource and Synchroniz The Page Fault duction, The N terrupts and Ex Ianager, Virtual dure calls and IP	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rootl ns, Starting the Kernel, Co DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th ceptions, The NT exect Memory Manager, I/o Ma C, The native API, subsys	Vista Fime Hours clusion, edded s, and kits. ntrol in DULE rocess femory nt. The mreads, utive , unager, tems.	10 Hours 10 Hours
Structures, Operating System Software Memory Management, Summary Module 3 Multiprocessor and Real-Time Sche Scheduling, Linux Scheduling, UNIX Scheduling, Process Migration, Distribut Distributed Deadlock Module 4 Embedded Operating Systems: Em Operating Systems, eCOS, TinyOS, Con Assets, Intruders, Malicious Software O Module 5 Kernel Organization: Using Kernel S the Machine , Modules and Device Ma Installation and Removal, Process Manager, Creating a new Task , IPC Manager , The Virtual Address Space, windows NT/2000/XP kernel: Introd Multiplication Synchronization,Traps,Int Object Manager, Process and Thread M The cache Manager Kernel local proced Course Outcomes The students should be able to:	e, UNIX Memor eduling: Multipro PrecIsSI) Sche ited Global State bedded Systems mputer Security Overview, Viruse Gervices, Daemor anagement, MO and Resource C and Synchroniz The Page Fault duction, The N terrupts and Ex Ianager, Virtual dure calls and IP usion, Deadlock	gement. Hardware and C y Management, Windows ocessor Scheduling, Real-T eduling, Windows Vista es, Distributed Mutual Exc s, Characteristics of Emb Concepts, Threats, Attack s, Worms, and Bots, Rooth of DULE Organization, MO Management, Running P ration, The Scheduler , M Handler , File Managemen T kernel, Objects , Th aceptions, The NT exect Memory Manager, I/o Ma C, The native API, subsyst detection and agreement	Vista	10 Hours 10 Hours

- Identify the different features of real time and mobile operating system
- Modify existing open source kernels in terms of functionality or features used

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. William Stallings: Operating Systems: Internals and Design Principles, 6th Edition, Prentice Hall, 2013.
- 2. Gary Nutt: Operating Systems, 3rd Edition, Pearson, 2014.

Reference Books:

- 1. Silberschatz, Galvin, Gagne: Operating System Concepts, 8th Edition, Wiley, 2008
- 2. Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems, Design and Implementation, 3rd Edition, Prentice Hall, 2006.
- 3. Pradeep K Sinha: Distribute Operating Systems, Concept and Design, PHI, 2007

CL	OUD COMPUTING			
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
	SEMESTER – I			
Subject Code	16SCS12/16SCE12			
	16SIT22/16SSE254	IA Marks	20	
	16SCN22/16LNI151			
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS – 04			
Course objectives: This course will ena				
• Define and Cloud, models and				
Compare and contrast program		r applications		
• Explain virtuaization, Task Sch	neduling algorithms.			
Apply ZooKeeper, Map-Reduce	e concept to application	IS.		
Module 1			Teaching	
			Hours	
Introduction, Cloud Infrastructure				
models and services, Ethical issues, C				
Cloud computing the Google perspective, Microsoft Windows Azure and online services,				
Open-source software platforms for p				
lock-in, Energy use and ecological impact, Service level agreements, User experience			nce	
and software licensing. Exercises and problems.				
Module 2				
Cloud Computing: Application				
Architectural styles of cloud computing, Workflows: Coordination of multiple activities,				
Coordination based on a state machine model: The Zookeeper, The Map Reduce				
programming model, A case study: The Gre The Web application, Cloud for science and				
engineering, High-performance computing on a cloud, Cloud computing for Biology				
research, Social computing, digital content and cloud computing.				
Module 3				
Cloud Resource Virtualization: V				
machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study:				
viitualization and paravirtualization, F	ardware support for	virtualization, Case Sti	uuy.	

	r
Xen a VMM based paravirtualization, Optimization of network virtualization, vBlades,	
Performance comparison of virtual machines, The dark side of virtualization, Exercises	
and problems	
Module 4	
Cloud Resource Management and Scheduling: Policies and mechanisms for resource	10 Hours
management, Application of control theory to task scheduling on a cloud, Stability of a	
two-level resource allocation architecture, Feedback control based on dynamic	
thresholds, Coordination of specialized autonomic performance managers, A utility-	
based model for cloud-based Web services, Resourcing bundling: Combinatorial	
auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing,	
Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines,	
Scheduling MapReduce applications subject to deadlines, Resource management and	
dynamic scaling, Exercises and problems.	
Module 5	
Cloud Security, Cloud Application Development: Cloud security risks, Security: The	10 Hours
top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating	
system security, Virtual machine Security, Security of virtualization, Security risks posed	
by shared images, Security risks posed by a management OS, A trusted virtual machine	
monitor, Amazon web services: EC2 instances, Connecting clients to cloud instances	
through firewalls, Security rules for application and transport layer protocols in EC2,	
How to launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-	
based simulation of a distributed trust algorithm, A trust management service, A cloud	
service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and	
problems.	
Course Outcomes	I
The students should be able to:	
• Compare the strengths and limitations of cloud computing	
• Identify the architecture, infrastructure and delivery models of cloud computing	
 Apply suitable virtualization concept. 	
 Choose the appropriate cloud player 	
 Address the core issues of cloud computing such as security, privacy and interoper 	obility
 Address the core issues of cloud computing such as security, privacy and incroper Design Cloud Services 	aomiy
 Design Cloud Services Set a private cloud 	
Question paper pattern: The question paper will have ten questions.	
There will be 2 questions from each module.	
Each question will have questions covering all the topics under a module. The students will	have to
answer 5 full questions, selecting one full question from each module.	
Text Books:	
1 Dan C Marinescu: Cloud Computing Theory and Practice Elsevier(MK) 2013	
1. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.	
Reference Books:	nciples and
Reference Books: 1. Rajkumar Buyya , James Broberg, Andrzej Goscinski: Cloud Computing Pri	nciples and
Reference Books: 1. Rajkumar Buyya , James Broberg, Andrzej Goscinski: Cloud Computing Pri Paradigms, Willey 2014.	•
Reference Books: 1. Rajkumar Buyya , James Broberg, Andrzej Goscinski: Cloud Computing Pri	

ADVANCES IN DATA BA	SE MANAGEMEN	T SYSTEMS	
[As per Choice Based C			
(Effective from the a		-2017)	
	MESTER – I		
Subject Code	16SSE151/ 16SIT1 16SCS13	^{13/} IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CR	REDITS – 04		
Course objectives: This course will enable stu	dents to		
Define parallel and distributed databa	ses and its application	18.	
Show applications of Object Oriented	database		
• Explain basic concepts, principles of i			
• Utilize the advanced topics of data wa			
Infer emerging and advanced data mo		5 .	
 Extend knowledge in research topics 			
Module 1	of databases.		Teaching
Module 1			Hours
Review of Relational Data Model and Rela	ational Databasa Ca	netrainte. Relational	10 Hours
model concepts; Relational model constraints			10 110015
operations, anomalies, dealing with const			
Overview of Object-Oriented Concepts –			
examples, Abstract data types, Encapsu			
examples.		enies, polymorphism,	
Module 2			
Object and Object-Relational Databases	s. Overview of OC	P: Complex objects:	10 Hours
Identity, structure etc. Object model of O			10 110015
Object Query Language OQL; Conceptual	e e	0 0	
object guery Language OQL, conceptual object relational features of SQL; Object-rel			
and related issues for extended type systems			
relational model. Overview of C++ language b	•	examples, the nested	
Module 3	Jinding,		
Parallel and Distributed Databases: Arc	bitacturas for parall	al databasas: Darallal	10 Hours
query evaluation; Parallelizing individual			
Introduction to distributed databases; Distributed			
		e	
Distributed DBMS; Distributed catalog management; Distributed Query processing; Updating distributed data; Distributed transactions; Distributed Concurrency control and			
Recovery.	ions, Distributed Co	neutrency control and	
Module 4			
Data Warehousing, Decision Support an	d Doto Mining. Ir	troduction to decision	10 Hours
support; OLAP, multidimensional model; W	6		10 Hours
quickly; Implementation techniques for OLAF			
support, View materialization, Maintaining			
Mining; Counting co-occurrences; Mining for			
CMC Curves; Clustering; Similarity search data streams; Additional data mining tasks.	over sequences, III	cremental mining and	
Module 5			
Module 5 Enhanced Data Models for Some Advanced	Applications. Act	va databasa conconto	10 Hours
and triggers; Temporal, Spatial, and Deduct			
Recent Applications: Mobile databases;			
Information Systems; Genome data manageme		ases, deographical	
Course Outcomes	111.		
The students should be able to:			

- Select the appropriate high performance database like parallel and distributed database
- Infer and represent the real world data using object oriented database
- Interpret rule set in the database to implement data warehousing of mining
- Discover and design database for recent applications database for better interoperability

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education, 2013.
- 2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2013.

Reference Books:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System Concepts, 6th Edition, McGraw Hill, 2010.

PROBABILITY STATISTICS AND QUEUING THEORY				
[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)				
	SEMESTER – I			
Subject Code	16LNI14 /			
	16SCN14/ 16SCS14 /			
	16SSE14 / 16SIT14	IA Marks	20	
	/16SCE14 /			
	16SFC14			
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS – 04			
Course objectives: This course will en	able students to			
Develop analytical capability a	and to impart knowledge	of Probability, Statistics	and Queuing.	
Apply above concepts in Engi	neering and Technology.	-	-	
Acquire knowledge of Hypoth			ations so as to	
enable them to apply them for	solving real world probl	ems		
Module 1			Teaching	
			Hours	
Axioms of probability, Conditional probability, Total probability, Baye's theorem,				
Discrete Random variable, Probability mass function, Continuous Random variable.				
Probability density function, Cumulative Distribution Function, and its properties,				
Two-dimensional Random variables, Joint pdf / cdf and their properties				
Module 2				
Probability Distributions / Discrete distributions: Binomial, Poisson Geometric and 10				
Hyper-geometric distributions and their properties. Continuous distributions: Uniform,				
Normal, exponential distributions and their properties.				
Module 3				
Random Processes: Classification, N				
values of Random Processes, Analytical representation of Random Process,				
Autocorrelation Function, Cross-correlation function and their properties, Ergodicity,				
Poisson process, Markov Process, Ma	rkov chain.			
Module 4			1 40	
Testing Hypothesis: Testing of Hyp	pothesis: Formulation of	of Null hypothesis, critic	cal 10 Hours	

region, level of significance, errors in testing, Tests of significance for Large and Small	
Samples, t-distribution, its properties and uses, F-distribution, its properties and uses,	
Chi-square distribution, its properties and uses, $\chi 2$ – test for goodness of fit, $\chi 2$ test for	
Independence	
Module 5	
Symbolic Representation of a Queuing Model, Poisson Queue system, Little Law, Types	10 Hours
of Stochastic Processes, Birth-Death Process, The M/M/1 Queuing System, The M/M/s	
Queuing System, The M/M/s Queuing with Finite buffers.	
Course Outcomes The students should be able to:	
 Demonstrate use of probability and characterize probability models using probability (density) functions & cumulative distribution functions. 	⁷ mass
 Explain the techniques of developing discrete & continuous probability distributions its applications. 	and
• Describe a random process in terms of its mean and correlation functions.	
• Outline methods of Hypothesis testing for goodness of fit.	
• Define the terminology & nomenclature appropriate queuing theory and also distingu	ish
various queuing models.	
Question paper pattern:	
The question paper will have ten questions.	
There will be 2 questions from each module.	
Each question will have questions covering all the topics under a module. The students will	have to
answer 5 full questions, selecting one full question from each module.	
Text Books:	
 Probability, Statistics and Queuing Theory, V. Sundarapandian, Eastern Economy E PHI Learning Pvt. Ltd, 2009. 	dition,
Reference Books:	
1. Probability & Statistics with Reliability, Queuing and Computer Applications, 2 nd E	dition
by Kishor. S. Trivedi, Prentice Hall of India, 2004.	
2. Probability, Statistics and Random Processes, 1 st Edition by P Kausalya, Pearson	

 Probability, Statistics and Random Processes, 1st Edition by P Kausalya, Pearson Education, 2013.

ADVANCES IN DIGITAL IMAGE PROCESSING				
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the ac	·	-2017)		
SEN	AESTER – I		-	
Subject Code	16SCS151	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
CR	EDITS – 03	·		
Course objectives: This course will enable stud	lents to			
• Explain image fundamentals and mathematical transforms necessary for image processing and to study the image enhancement techniques.				
 Demonstrate the image segmentation and representation techniques. How image are analyzed to extract features of interest. 				
 Introduce the concepts of image registration and image fusion. Analyze the constraints in image processing when dealing with 3D data sets. 				
Module 1			Teaching	
			Hours	
Introduction: What is Digital Image Processing, Origins of Digital Image Processing, 8 Ho				
Examples of fields that use DIP, Fundament	ntal Steps in Digital	I Image Processing	,	

Components of an Image Processing System. Digital Image Fundamentals: Elements of	
Visual Perception, A Simple Image Formation Model, Basic Concepts in Sampling and	
Quantization, Representing Digital Images, Spatial and Gray-level Resolution,	
Zooming and Shrinking Digital Images, Some Basic Relationships Between Pixels,	
Linear and Nonlinear Operations.	
Module 2	
Image Enhancement in the Spatial Domain: Some Basic Gray Level Transformations,	8 Hours
Histogram Processing, Enhancement Using Arithmetic/Logic Operations, Basics of	
Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters, Combining	
Spatial Enhancement Methods. Image Enhancement in the Frequency Domain:	
Introduction to the Fourier Transform and the Frequency Domain, Smoothing	
frequency-Domain Filters, Sharpening Frequency-Domain Filters, Homomorphic	
Filtering.	
Module 3	
Image Restoration: A Model of the Image degradation/Restoration process, Noise	8 Hours
Models, Restoration in the Presence of Noise Only- Spatial Filtering, Periodic Noise	
Reduction by Frequency Domain Filtering, Linear, Position-Invariant Degradations,	
Estimating the Degradation Function, Inverse Filtering ,Minimum Mean Square Error	
(Wiener) Filtering, Constrained Least Square Filtering, Geometric Mean Filter.	
Module 4	
Color Fundamentals: Color Models, Pseudocolor Image Processing, Basics of Full-	8 Hours
Color Image Processing, Color Transformations, Smoothing and Sharpening, Color	
Segmentation, Noise in Color Images, Color Image Compression. Wavelets and	
Multiresolution Processing: Image Pyramids, Subband coding, The Haar Transform,	
Multiresolution Expansions, Wavelet Transforms in one Dimension, Fast Wavelet	
Transform, Wavelet Transforms in Two Dimensions, Wavelet Packets. Image	
Compression: Fundamentals, Image Compression Models, Error-free (Lossless)	
compression, Lossy Compression	
Module 5	
Morphological Image Processing: Preliminaries, Dilation and Erosion, Opening and	8 Hours
Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	
Image Segmentation: Detection of Discontinuities, Edge Linking and Boundary	
Detection, Thresholding, Region-Based Segmentation.	
Course Outcomes	
The students should be able to:	
• Explain image formation and the role human visual system plays in perception of g	ray and
color image data.	
Apply image processing techniques in both the spatial and frequency (Fourier) dom	ains.
 Design image analysis techniques in the form of image segmentation and to evaluat 	te the
Methodologies for segmentation.	
 Conduct independent study and analysis of feature extraction techniques. 	
• Explain the concepts of image registration and image fusion.	
• Analyze the constraints in image processing when dealing with 3D data sets and to	apply
image	
• Apply algorithms in practical applications.	
Question paper pattern:	
The question paper will have ten questions.	
There will be 2 questions from each module.	
Each question will have questions covering all the topics under a module. The students will	have to
answer 5 full questions, selecting one full question from each module.	
Text Books:	
1. Rafael C Gonzalez and Richard E. Woods: Digital Image Processing, PHI 2 nd Edit	ion
2005.	
Reference Books:	

- 1. S. Sridhar, Digital Image Processing, Oxford University Press India, 2011.
- 2. A. K. Jain: Fundamentals of Digital Image Processing, Pearson, 2004.
- 3. Scott E. Umbaugh: Digital Image Processing and Analysis, CRC Press, 2014.
- 4. S. Jayaraman, S. Esakkirajan, T. Veerakumar: Digital Image Processing, McGraw Hill Ed. (India) Pvt. Ltd., 2013.
- 5. Anthony Scime, "Web Mining Applications and Techniques", Idea Group Publishing, 2005.

EMBEDDED COMPUTING SYSTEMS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – I			
Subject Code	16SCE13 / 16SCS152	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will enab	ble students to		
 Explain a general overview Show current statistics of En Examine a complete microp Design, code, compile, and Integrate a fully functional s Make intelligent choices bet 	mbedded Systems rocessor-based hard test real-time softwa system including har	lware system are rdware and software	
Module 1			Teaching Hours
Introduction to embedded systems: Er system, Embedded hardware units and system, Examples of embedded sys Formalization of system design, Design embedded systems, skills required for an Module 2	l device in a syste tems, Design proc process and design	m, Embedded software in a cess in embedded system, n examples, Classification of	8 Hours
Devices and communication buses for communication devices, Parallel devic device ports, Wireless devices, Timer a clock, Networked embedded systems, s device protocols-parallel communication buses, Internet enabled systems-netw protocols.	ce ports, Sophistica nd counting devices Serial bus communi n internet using ISA	Ated interfacing features in b, Watchdog timer, Real time cation protocols, Parallel bus b, PCI, PCI-X and advanced	8 Hours
Module 3			
Device drivers and interrupts and se approach without interrupt service mech servicing (Handling) Mechanism, Mu context switching, interrupt latency and service mechanism from Context-savir programming.	nanism, ISR concep ltiple interrupts, Co 1 deadline, Classific	t, Interrupt sources, Interrupt ontext and the periods for ation of processors interrupt	8 Hours
Module 4 Inter process communication and sym Multiple process in an application, M states, Task and Data, Clear-cut distinc characteristics, concept and semaphor	Iultiple threads in tion between function	an application, Tasks, Task ons. ISRS and tasks by their	8 Hours

Signal function, Semaphore functions, Message Queue functions, Mailbox functions,	
Pipe functions, Socket functions, RPC functions. Module 5	
Real-time operating systems: OS Services, Process management, Timer functions, Event functions, Memory management, Device, file and IO subsystems management, Interrupt routines in RTOS environment and handling of interrupt source calls, Real-time operating systems, Basic design using an RTOS, RTOS task scheduling models, interrupt latency and response of the tasks as performance metrics, OS security issues. Introduction to embedded software development process and tools, Host and target machines, Linking and location software.	8 Hours
Course Outcomes	
The students should be able to:	
• Distinguish the characteristics of embedded computer systems.	
• Examine the various vulnerabilities of embedded computer systems.	
• Design an embedded system.	
• Design and develop modules using RTOS.	
• Implement RPC, threads and tasks	
Question paper pattern:	
The question paper will have ten questions.	
There will be 2 questions from each module.	
Each question will have questions covering all the topics under a module. The students will answer 5 full questions, selecting one full question from each module.	have to
Text Books:	
 Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2nd edit Tata McGraw hill-2013. 	ion,
Reference Books:	
 Marilyn Wolf, "Computer as Components, Principles of Embedded Computing Syst Design" 3rd edition, Elsevier-2014. 	em

ADVANCES IN STORAGE AREA NETWORKS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – I				
Subject Code	16SSE153 / 16LNI254 / 16SCS153	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03	·	•	
Course objectives: This course will enable students to				
Define and contrast storage centric and server centric systems				
 Define metrics used for Designing storage area networks 				
Illustrate RAID concepts				
• Demonstrate, how data centers maintain the data with the concepts of backup mainly remote mirroring concepts for both simple and complex systems.				

Module 1	Teaching Hours
Introduction: Server Centric IT Architecture and its Limitations; Storage – Centric IT	8 Hours
Architecture and its advantages. Case study: Replacing a server with Storage Networks	
The Data Storage and Data Access problem; The Battle for size and access. Intelligent	
Disk Subsystems: Architecture of Intelligent Disk Subsystems; Hard disks and Internal	

I/O Channels; JBOD, Storage virtualization using RAID and different RAID levels;				
Caching: Acceleration of Hard Disk Access; Intelligent disk subsystems, Availability of				
disk subsystems.				
Module 2				
I/O Techniques : The Physical I/O path from the CPU to the Storage System; SCSI; 8 Hour				
Fibre Channel Protocol Stack; Fibre Channel SAN; IP Storage. Network Attached Storage: The NAS Architecture, The NAS hardware Architecture, The NAS Software				
Architecture, Network connectivity, NAS as a storage system. File System and NAS:				
Local File Systems; Network file Systems and file servers; Shared Disk file systems;				
Comparison of fibre Channel and NAS.				
Module 3				
Storage Virtualization: Definition of Storage virtualization; Implementation	8 Hours			
Considerations; Storage virtualization on Block or file level; Storage virtualization on				
various levels of the storage Network; Symmetric and Asymmetric storage virtualization				
in the Network.				
Module 4				
SAN Architecture and Hardware devices: Overview, Creating a Network for storage;	8 Hours			
SAN Hardware devices; The fibre channel switch; Host Bus Adaptors; Putting the				
storage in SAN; Fabric operation from a Hardware perspective. Software Components				
of SAN: The switch's Operating system; Device Drivers; Supporting the switch's				
components; Configuration options for SANs.	L			
Module 5	0.11			
Management of Storage Network: System Management, Requirement of management	8 Hours			
System, Support by Management System, Management Interface, Standardized				
Mechanisms, Property Mechanisms, In-band Management, Use of SNMP, CIM and WBEM, Storage Management Initiative Specification (SMI-S), CMIP and DMI,				
Optional Aspects of the Management of Storage Networks, Summary				
Course Outcomes				
The students should be able to:				
 Identify the need for performance evaluation and the metrics used for it 				
 Apply the techniques used for data maintenance. 				
 Realize strong virtualization concepts 				
 Develop techniques for evaluating policies for LUN masking, file systems 				
Question paper pattern:				
The question paper will have ten questions.				
There will be 2 questions from each module.				
Each question will have questions covering all the topics under a module. The students will have to				
answer 5 full questions, selecting one full question from each module.				
Text Books:				
1. Ulf Troppens, Rainer Erkens and Wolfgang Muller: Storage Networks Explained, V	Wiley			
India,2013.				
Reference Books:	CII 2011			
1. Robert Spalding: "Storage Networks The Complete Reference", Tata McGraw-Hill, 2011.				
2. Marc Farley: Storage Networking Fundamentals – An Introduction to Storage Devices, Subsystems, Applications, Management, and File Systems, Cisco Press, 2005.				
	ata Guida to			
 Richard Barker and Paul Massiglia: "Storage Area Network Essentials A Complete Guide to understanding and Implementing SANs", Wiley India, 2006. 				
understanding and implementing SAIVS, whey india, 2000.				

ADVANCES IN COMPUTER GRAPHICS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)				
	SEMESTER – I			
Subject Code	16SCS154 /16S		20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will enable				
 Explain basic and fundamental con Compare and contrast image synthe Examine applications of modeling, Discuss different color modeling and Explain hierarchical modeling and 	esis techniques. design and visuali nd computer anima	zation. tion.		
Module 1			Teaching Hours	
Three-Dimensional Object Representations	· Polybodro Oros	GI Polyhadron Eunstian		
Curved Surfaces, Quadric Surfaces, Sup Cubic-Surface Functions, Blobby Obj Interpolation Methods, Bezier Spline C Spline Surfaces, Beta- Splines, Retio Representations, Displaying Spline Curves Functions, Sweep Representations, Cons BSP T rees, Fractal-Geometry Methods Methods, Particle Systems, Physically Base Module 2 Visible-Surface Detection Methods: Cla Algorithms, Back-Face Method, Depth-B	ects, Spline Rep Curves, Bazier Sur nal Splines, Cor and rfaces, Ope tructive Solid –G s, Shape Gramma ed Modeling, Visua assification Of V	oresentations, Cubic-Splin faces B-Spline Curves, B nversion Between Splin anGL Approximation-Splin eometry Method, Octrees rs and Others Procedura alization Of Data Sets.	e - e s, il n 8 Hours	
Method, BSP-Tree Method, Area-Sul Casting Method, Comparison of Visibility Wire-Frame Visibility –De tection Function Module 3	odivision Method -Detection Met	, Octree Methods, Ray	-	
Illumination Models and Surface- Re Lighting Effects, Basic Illumination M Effects, Shadows, Camera parameters, I anddithering techniques, polygon rendering lighting model, Environment mapping, Modeling surface details with polygons Illumination and surface-rendering function Module 4	Iodels, Transpare Displaying light in g methods, ray-tra Photon mapping, s, Texture mapping	nt Surfaces, Atmospheri tensities, Halftone pattern teing methods, Radiosit Adding surface details g, Bump mapping, OpenGl	c s y s,	
Color models, color applications and Comp models, Standard primaries and the chron YIQ and related color models, The CMY model, The HLS color model, Color Sele computer animation, Design of an techniques, General computer-animatio Key-frame systems, Motion specification motions, OpenGL animation procedures. Module 5	naticity diagram, T and CMYK coll ction and applicat nimations sequenc on functions, Com	The RGB color model, The or models, The HSV color ions. Raster methods for es, Traditional animatio puter-animation languages	e r r n s,	
Hierarchical modeling and Graphics file for packages, General hierarchical modeling n display list, Image-File configurations, techniques, Composition of the major file for	nethods, Hierarchi Color-reduction	cal modeling using openGI	-	

Course Outcomes

The students should be able to:

- Discuss and implement images and objects using 3D representation and openGL methodologies.
- Design and develop surface detection using various detection methods.
- Choose various illumination models for provides effective standards of objects.
- Design of develop effective computer animations.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Computer Graphics with openGL-Hearn Baker 4rd edition, Pearson publication.2010.
- 2. James D Foley, Andries van dam, Steven K Feiner, John F Hughes, Computer graphics, Pearson Education 3rd edition, 2013.

Reference Books:

- 1. Edward Angel: Interactive Computer graphics a top-down approach with openGL, Addison Wesley, 6th edition 2012.
- 2. Advanced graphics programming using openGL: Tom Mc Reynolds-David Blythe. Elesvier.MK, 2005.

OPERATING SYSTEMS AND ADBMS LABORATORY [As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2016 -2017)

SEMESTER – I

SEMILSTER - I					
Subject Code	16SCS16	IA Marks	20		
Number of Lecture Hours/Week	01+03	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	03		
CREDITS – 02					

Course objectives: This course will enable students to

- To provide students with contemporary knowledge in Data Compression and Coding.
- To equip students with skills to analyze and evaluate different Data Compression and Coding methods
- To be instrumental to handle multi dimension data compression
- To acquire practical knowledge on advanced databases and its applications.
- To analyze and work on areas like Storage, Retrieval, Multi valued attributes, Triggers and other complex objects, Algorithms etc related to ADBMS.
- To design and implement recent applications database for better interoperability

PART – A OS LABORATORY WORK:

- 1. Design and Develop a UNIX/LINUX shell program that should support at least 10 commands(Assume suitable application). OR Design a front-end application upon click of a button corresponding shell command should be executed.
- 2.
- 3. 2.Design and develop a program to implement lazy buddy system algorithm.
- 4.
- 5. 3.Write a multi-class multithreaded program that simulates multiple sleeping barbers, all in one barbershop that has a finite number of chairs in the waiting room. Each customer is instantiated from a single customer class; each barber is instantiated from a single Barber

class.

- 6.
- 7. 4.Create two process and demonstrate the usage of Shared segment by the above processes(use shmget, signal, fork etc. to simulate the working environment of the program).
- 8.
- 9. 5.Design and develop a program to realize the virus classification, such as boot sector infector, file infector and macro

PART – B ADBMS LABORATORY WORK

Note: The following experiments may be implemented on MySQL/ORACLE or any other suitable RDBMS with support for Object features

- 1. Develop a database application to demonstrate storing and retrieving of BLOB and CLOB objects.
 - a. Write a binary large object (BLOB) to a database as either binary or character (CLOB) data, depending on the type of the field in your data source. To write a BLOB value to the database, issue the appropriate INSERT or UPDATE statement and pass the BLOB value as an input parameter. If your BLOB is stored as text, such as a SQL Server text field, pass the BLOB as a string parameter. If the BLOB is stored in binary format, such as a SQL Server image field, pass an array of type byte as a binary parameter.
 - b. Once storing of BLOB and CLOB objects is done, retrieve them and display the results accordingly.

2. Develop a database application to demonstrate the representation of multi valued attributes, and the use of nested tables to represent complex objects. Write suitable queries to demonstrate their use.

Consider Purchase Order Example: This example is based on a typical business activity: managing customer orders. Need to demonstrate how the application might evolve from relational to object-relational, and how you could write it from scratch using a pure object-oriented approach.

- a. Show how to implement the schema -- Implementing the Application under the Relational Model -- using only Oracle's built-in data types. Build an object-oriented application on top of this relational schema using object views
- 3. Design and develop a suitable Student Database application by considering appropriate attributes. Couple of attributes to be maintained is the Attendance of a student in each subject for which he/she has enrolled and Internal Assessment Using TRIGGERS, write active rules to do the following:
 - a. Whenever the attendance is updated, check if the attendance is less than 85%; if so, notify the Head of the Department concerned.
 - b. Whenever, the marks in an Internal Assessment Test are entered, check if the marks are less than 40%; if so, notify the Head of the Department concerned.

Use the following guidelines when designing triggers:

- Use triggers to guarantee that when a specific operation is performed, related actions are performed.
- Use database triggers only for centralized, global operations that should be fired for the triggering statement, regardless of which user or database application issues the statement.
- Do not define triggers that duplicate the functionality already built into Oracle. For example, do not define triggers to enforce data integrity rules that can be easily enforced using declarative integrity constraints.
- Limit the size of triggers (60 lines or fewer is a good guideline). If the logic for your trigger requires much more than 60 lines of PL/SQL code, it is better to include most of the code in

a stored procedure, and call the procedure from the trigger.

• Be careful not to create recursive triggers. For example, creating an AFTER UPDATE statement trigger on the EMP table that itself issues an UPDATE statement on EMP causes the trigger to fire recursively until it has run out of memory.

1. Design, develop, and execute a program to implement specific Apriori algorithm for mining association rules. Run the program against any large database available in the public domain and discuss the results.

Association rules are if/then statements that help uncover relationships between seemingly unrelated data in a relational database or other information repository. An example of an association rule would be "If a customer buys a dozen eggs, he is 80% likely to also purchase milk."

Course Outcomes

The students should be able to:

• Work on the concepts of Software Testing and ADBMS at the practical level

Compare

- and pick out the right type of software testing process for any given real world problem
 Carry out the software testing process in efficient way
- Establish a quality environment as specified in standards for developing quality software
- Model and represent the real world data using object oriented database
- Embed the rules set in the database to implement various features of ADBMS
- Choose, design and implement recent applications database for better interoperability

Conduction of Practical Examination:

- 1. All laboratory experiments (nos) are to be included for practical examination.
- 2. Students are allowed to pick one experiment from each part and execute both
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- 4. **PART A**: Procedure + Conduction + Viva: 10 + 20 + 10(40)
- 5. **PART B**: Procedure + Conduction + Viva: 10 + 20 + 10 (40)
- 6. Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

	SEMINAR sed Credit System (CBCS) the academic year 2016 -2					
SEMESTER – I						
Subject Code	16SCE17 / 16SCN17 / 16LNI17 / 16SIT17 / 16SSE17 / 16SCS17 / 16SFC17	IA Marks	100			
Number of Lecture Hours/Week		Exam Marks	-			
Total Number of Lecture Hours		Exam Hours	-			
	CREDITS – 01					
Course objectives: This course will ena	ble students to					
• Motivate the students to read te	chnical article					
Discover recent technology dev	elopments					
Descriptions						
The students should read a recent techn from any of the leading reputed and refe	ereed journals like:	n the topic as muc	h as possible)			

- 1. IEEE Transactions, journals, magazines, etc.
- 2. ACM Transactions, journals, magazines, SIG series, etc.

3. Springer

4. Elsevier publications etc

In the area of (to name few and not limited to)

- Web Technology
- Cloud Computing
- Artificial Intelligent
- Networking
- Security
- Data mining

Course Outcomes

The students should be able to:

- Conduct survey on recent technologies
- Infer and interpret the information from the survey conducted
- Motivated towards research

Conduction:

The students have to present at least ONE technical seminar on the selected topic and submit a report for internal evaluation.

Marks Distribution: Literature Survey + Presentation (PPT) + Report + Question & Answer + Paper: 20 + 30 + 30 + 20 (100).