VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

Advanced Calculus and Numerical Methods (18MAT21)

BLOW UP SYLLABUS

Topics	Topics To be Covered	Hours		
M	MODULE - I			
VECTO	OR CALCULUS			
1. Vector Differentiation: Scalar and vector fields. Gradient, directional derivative; curl and divergence	Discussion restricted to problems (Article No.8.4,Article No.8.5, Article No.8.6, of Text book 1)	2L		
2. Solenoidal and irrotational vector fields	Discussion of problems (Article.No.8.7 of Text book 1)	2 L		
3.Vector Integration: Line integrals, Theorems of Green, Gauss and Stokes, Applications to work done by a force and flux. (RBT Levels: L1 & L2)	Discussion of Problems (Article No.8.11, 8.13, 8.14 and 8.16 of Text book 1) (Problems related to the evaluation of integrals using the three theorems. No problems on verification of theorems).	4 L		
Tutorials	Involvement of faculty and students in identifying the solutions to the problems; PPT presentations of Engg. Applications by the faculty, about the module.	2T		
	Total	10		
MODULE - II				
DIFFERENTIAL EQU	ATIONS OF HIGHER ORDER			
1. Second and higher order linear ODE's with constant coefficients-Inverse differential operator	Discussion of problems(Article No.13.4 and13.5 (Cases I,II,III only) of Text book 1) (<i>P.I. Restricted to R</i> (x)= e^{ax} , sin $ax/cos ax$, x^n for $f(D)y = R(x)$)	3L		
2. Method of variation of parameters; Cauchy's and Legendre's differential equations.	(i)Discussion of problems(Article No.13.8 (1) of Text book 1)) (ii) Discussion of problems (Article No.13.9of Text book 1)(<i>P.I. Restricted to</i> $R(x) = e^{ax}$, sin $ax/\cos ax$, $x^n \& \log x$ for $f(D)y = R(x)$) for Cauchy's and Legendre's equations)	3L		
3. Applications to oscillations of a spring and L-C-R circuits (RBT Levels:L1,L2 and L3)	Discussion of problems (Article No.14.4 and 14.5 of Text book 1)	2L		

Tutorials	Involvement of faculty and students in		
	identifying the solutions to the problems;	2Т	
	PPT presentations of Engg. Applications	<i>4</i> 1	
	by the faculty, about the module.		
· · · · · · · · · · · · · · · · · · ·	Total	10	
MO	MODULE – III		
PARTIAL DIFFE	ERENTIAL EQUATIONS		
1. Formation of PDEs by elimination of	(i)Discussion of problems (Article		
arbitrary constants / functions. Solution of	No17.2 of Text book 1).	21	
non-homogeneous PDE by direct	(ii)Discussion of problems (Article	JL	
integration	No17.4 of Text book 1).		
2.Homogeneous PDEs involving derivative	(i)Discussion of problems (Article No.		
with respect to one independent variable	17.4 of Text book 1).	21	
only. Solution of Lagrange's linear PDE	(ii) Discussion of problems (Article	4 L	
	No17.5 of Text book 1).		
3. Derivation of one dimensional heat and	Derivation and solutions[Article		
wave equations and solutions by the	No.18.4 (1 & 2), Article No.18.5 (1 & 2)	21	
method of separation of variables	of Text book 1].	3L	
functions.(RBT Levels:L1,L2 and L3)			
Tutorials	Involvement of faculty and students in		
	identifying the solutions to the		
	problems: PPT presentations of Engg.	2 T	
	Applications by the faculty, about the		
	module.		
	Total	10	
МО	DULE - IV		
INFINTE SERIES and	POWER SERIES SOLUTIONS		
1. Series of positive terms- convergence	Discussion of problems (Article No. 9.3		
and divergence. Cauchy's root test and	(1 & 2), 9.9, 9.11 of Text book 1).	21	
D'Alembert's ratio test(without proof)-		21	
Illustrative examples.			
2. Solutions-Series solution of Bessel's	Series solution of Bessel's differential		
differential equation leading to $Jn(x)$ -	equation (Article No.16.5 (Case I),	31	
Bessel's function of first kind-	16.11(1) of Text book 1).	СЦ	
orthogonality.			
3. Series solution of Legendre's differential	Series solution of Legendre's		
equation leading to $Pn(x)$ -Legendre	differential equation (Article No.16.13		
polynomials. Rodrigue's formula (without	and 16.14 (1,2) of Text book 1)	21	
proof), problems (RBT Levels:L1 and L2)		ЭL	
Tutorials	Involvement of faculty and students in		
	identifying the solutions to the		
	problems; PPT presentations of Engg.	2 T	
	Applications by the faculty, about the		
	module.		

MODULE - V		
NUMERICAL METHODS		
1. Finite differences - Interpolation/ extrapolation using Newton's forward and backward difference formulae, Newton's divided difference and Lagrange's formulae.	(i)Discussion of problems (Article No.29.6, Article.No.29.10 and Article No. 29.12 of Text book 1).	4L
2. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods	(ii)Discussion of problems (Article No.28.2 (2 & 3) of Text book 1)	2L
3.Numerical integration: Simpson's (1/3)rd and (3/8)th rules, Weddle's rule (without proof) –Problems. (RBT Levels:L1,L2 and L3)	(iii)Discussion of problems (Article 30.7,30.8,30.10 of Text book 1)	2L
Tutorials	Involvement of faculty and students in identifying the solutions to the problems; PPT presentations of Engg. Applications by the faculty, about the module.	2 T
	Total	10

Text Books:

1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.

2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2016.