BLOW UP SYLLABUS

Transform Calculus, Fourier Series and Numerical Techniques(18MAT31) (Common to all Programmes) (Effective from the academic year 2019-20)

Topics	Topics To be Covered	Hours	
MODULE - I			
LAPLACE TRANSFORMS			
1. Laplace Transform: Definition and Laplace transforms of elementary functions (statements only). Laplace transforms of Periodic functions (statement only) and unit-step function – problems	Discussion restricted to the problems as suggested in Article No.21.1 to 21.5, 21.7,21.9, 21.10 & 21.17 of Text Book 2.	3L	
2. Inverse Laplace Transform: Definition & problems, Convolution theorem to find the inverse Laplace Transforms(without Proof) and Problems	Discussion restricted to problems as suggested in Article No.21.12 & 21.14 of Text Book 2.	3L	
3. Solution of linear differential equations using Laplace Transforms.	Application of Laplace transforms to solve ODE's restricted to Article No. 21.15 of Text Book 2.	1L	
Tutorials	Involvement of faculty and students in identifying the solutions to the problems; PPT presentations of Engg. Applications by the faculty, about the module.	2 T	
(RBT Levels: L1 & L2)	Total	09	
Μ	IODULE - II		
FOURIER SERIES			
1.Fourier Series: Periodic functions, Dirichlet's condition. Fourier series of periodic functions period 2π and arbitrary period.	Discussion and coverage of contents as suggested in Article No. 10.1 to 10.6 of Text book 2.	3L	
2. Half range Fourier series.	Discussion and coverage of contents as suggested in article No. 10.7 of Text Book 2.	2L	
3. Practical harmonic analysis.	Discussion and problems restricted to the full range Fourier series, in article No.10.11 of Text Book 2.	2L	
Tutorials	Involvement of faculty and students in identifying the solutions to the problems; PPT presentations of Engg. Applications by the faculty, about the module.	2T	
(RBT Levels: L1 & L2)	Total	09	
MODULE - III			
FOURIER TRANSFORMS & Z-TRANSFORMS			
1. Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transforms. Problems.	Discussion and Problems as suggested in Article No.22.1,22.2, 22.4 and, 22.5 (statements only) of Text Book 2.	3L	

2. Difference equations and Z-transforms:	Discussion and problems as suggested in		
transform-definition_standard z-transforms	Book 2		
damping and shifting rules, initial value and		•-	
final value theorems (without proof) and		2L	
problems.			
3. Inverse z-transform-problems and	Discussion and problems restricted to	AT	
applications to solve difference equations. (\mathbf{PPT} Levels: $L_1 \ll L_2$)	Article No.23.15(11) & 23.16 of Text	2L	
Tutorials	DOOK 2. Involvement of faculty and students in		
	identifying the solutions to the problems:	• •	
	PPT presentations of Engg. Applications	2 T	
	by the faculty, about the module.		
(RBT Levels: L1 & L2)	Total	09	
M	ODULE - IV		
NUMERICAL SOLUTIONS OF O	ORDINARY DIFFERENTIAL EQUATION	S	
1. Numerical Solutions of Ordinary	Discussion and problems restricted to		
Differential Equations (ODE's): Numerical	Article No.32.1 & 32.3 of Text Book 2.	2L	
solution of ODE's of first order and first			
2 Modified Fuler's method & Runge	Discussion and problems restricted to Article		
Kutta method of fourth order.	No.32.5 & 32.7 of Text Book 2. (For R-K	3 L	
	method, the 'h' shall be of single step)		
3.Milne's and Adam-Bashforth predictor	Discussion and problems restricted to Article		
and corrector method (No derivations of formulae) Broblems	methods usage of corrector formula shall be	2 L	
Tormulae)-Problems	only once)		
Tutorials	Involvement of faculty and students in		
	identifying the solutions to the problems;	2 T	
	PP1 presentations of Engg. Applications		
(RRT Levels: L1 & L2)	Total	00	
		07	
NUDULE - V			
1 Neuroical Solution of second order	D'ORDER ODE S & CALCULUS OF VAR	ATIONS	
ODE's:- Runge-Kutta method of order IV	Article No 32 12 of Text Book 2		
and Milne's predictor and corrector	Article 110.52.12 of Text Book 2.	3 L	
method.(No derivations of formulae).			
2. Calculus of Variations: Variation of	Discussion and problems as suggested in		
function and functional, variational	Article No.35.1 to 35.4(excluding minimal	2 I .	
problems, Euler's equation.	surface of revolution and Brachistochrone		
3 Goodesies hanging chain problems	problems) of Text Book 2.		
5. Geodesics, hanging chain, problems	Article No. 35.5 and problem No. 10 (page	21	
	1118) of Text Book 2.		
Tutorials	Involvement of faculty and students in		
	identifying the solutions to the problems;	2T	
	PPT presentations of Engg. Applications		
(DBT Lovels: I 1 & L 2)	by the faculty, about the module.		
(\mathbf{RDI} Levels: $\mathbf{LI} \propto \mathbf{L}^2$)	10121	09	

Text books:

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2017.
- 2. **B.S. Grewal**: Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2017.
- Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford University Press, 3rd Reprint, 2016.

Reference Books:

- 1. **C.Ray Wylie, Louis C.Barrett** : "Advanced Engineering Mathematics", 6th Edition, 2. McGraw-Hill Book Co., New York, 1995.
- S.S.Sastry: "Introductory Methods of Numerical Analysis", 11th Edition, Tata McGraw-Hill, 2010
- 3. **B.V.Ramana**: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.
- 4. **N.P.Bali and Manish Goyal**, "A Text Book of Engineering Mathematics", Laxmi Publications. Latest edition, 2014.
- Chandrika Prasad and Reena Garg "Advanced Engineering Mathematics", Latest edition, Khanna Publishing, 2018.