Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

\square

Third Semester B.E.Degree Examination Transform Calculus, Fourier Series and Numerical Techniques

(Common to all Programmes)
Time: 3 Hrs
Max.Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) Find the Laplace transform of (i) $\sqrt{e^{4(t+3)}}+e^{-2 t} \sin 3 t$ (ii) $t e^{-3 t} \sin 4 t$ (iii) $(1-\cos t) / t$
(10 Marks)
(b) The square wave function $f(t)$ with period " a " is defined by $f(t)=\left\{\begin{aligned} E, & 0 \leq t<a / 2 \\ -E, & a / 2 \leq t<a\end{aligned}\right.$

Show that $L\{f(t)\}=(E / s) \tanh (a s / 4)$.
(05 Marks)
(c) Employ Laplace transform to solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-4 y=2 e^{-x}, y(0)=1=y^{\prime}(0)$.

OR

2. (a) Find (i) $L^{-1}\left\{\frac{3 s+2}{s^{2}-s-2}\right\}$ (ii) $L^{-1}\left\{(s+5) /\left(s^{2}-6 s+13\right)\right\}$ (iii) $L^{-1}\left[\cot ^{-1}\{s / a\}\right]$
(10 Marks)
(b) Express $f(t)=\left\{\begin{array}{ll}1, & 0 \leq t \leq 1 \\ t, & t>1\end{array}\right.$ in terms Heaviside's unit step function and hence find its Laplace transform.
(05 Marks)
(c) Find the inverse Laplace transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$, using convolution theorem.
(05 Marks)

Module-2

3. (a) Find the Fourier series expansion of $f(x)=\frac{\pi^{2}}{12}-\frac{x^{2}}{4}$ in $-\pi \leq x \leq \pi$. Hence deduce that

$$
\begin{equation*}
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12} \tag{07Marks}
\end{equation*}
$$

(b) Find the half-range cosine series of $f(x)=(x+1)^{2}$ the interval $0 \leq x \leq 1$.
(c) Obtain the Fourier series of $f(x)=\left\{\begin{array}{l}l-x, \text { for } 0 \leq x \leq l \\ 0, \\ 0 \text { for } l \leq x \leq 2 l\end{array}\right.$ Hence deduce that $\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$.

OR

4. (a) The displacement y (in cms) of a machine part occurs due to the rotation of x radians is given below:

Rotation x (in radians)	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
Displacement y (in cms)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Expand y in terms of Fourier series up to second harmonics.
(07 Marks)
(b) Find the half-range sine series of e^{x} the interval $0 \leq x \leq 1$.
(c) Find the Fourier series expansion of $f(x)=|x|$ in $-\pi \leq x \leq \pi$. Hence deduce that

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{07Marks}
\end{equation*}
$$

Module-3

5. (a) If $f(x)=\left\{\begin{array}{ll}1-x^{2}, & \text { for }|x| \leq 1 \\ 0 & \text { for }|x|>1\end{array}\right.$, find the infinite Fourier transform of $f(x)$ and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$
(07 Marks)
(b) Find the Fourier cosine transform of $f(x)=e^{-2 x}+4 e^{-3 x}$
(06 Marks)
(c) Solve: $u_{n+2}-3 u_{n+1}+2 u_{n}=2^{n}$, given $u_{0}=0, u_{1}=1$ by using z-transforms.

OR

6. (a) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi e^{-m}}{2}, m .>0$.
(07 Marks)
(b) Find the z-transform of $\cos [n \pi / 2+\pi / 4]$
(06 Marks)
(c) Find the inverse z-transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$

Module-4

7. (a) Solve $\frac{d y}{d x}=e^{x}-y, y(0)=1$ using Taylor's series method considering up to fourth degree terms and, find the value of $y(0.1)$.
(07 Marks)
(b) Use Runge - Kutta method of fourth order to solve $(x+y) \frac{d y}{d x}=1, y(0.4)=1$, to find $y(0.5)$. (Take $h=0.1$).
(c) Given that $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}$ and $y(1)=1, y(1.1)=0.9960, y(1.2)=0.9860, \& y(1.3)=0.9720$ find $y(1.4)$, using Adam-Bashforth predictor-corrector method.
(07 Marks)

OR

8. (a) Solve the differential equation $\frac{d y}{d x}=x \sqrt{y}$ under the initial condition $y(1)=1$,by using modified Euler's method at the point $x=1.4$. Perform three iterations at each step, taking $h=0.2$.
(b) Use fourth order Runge - Kutta method, to find $y(0.1)$ with $h=0.1$, given

$$
\begin{equation*}
\frac{d y}{d x}+y+x y^{2}=0, y(0)=1 \tag{06Marks}
\end{equation*}
$$

(c) Apply Milne's predictor-corrector formulae to compute $y(0.3)$ given, $\frac{d y}{d x}=x+y^{2}$ with

x	0.0	0.1	0.2	0.3
y	1.0000	1.1000	1.2310	1.4020

Module-5

9. (a) Solve $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}-2 x y=1$, for $x=0.1$, correct to four decimal places, using initial conditions $y(0)=1, y^{\prime}(0)=0$, using Runge - Kutta method,
(07 Marks)
(b) Find the extremal of the functional $\int_{0}^{1}\left(y^{\prime 2}-y^{2}-y\right) e^{2 x} d x$, that passes through the points $(0,0)$ and $(1,1 / e)$.
(06 Marks)
(c) A heavy cable hangs freely under gravity at two fixed points. Show that the shape of the cable is catenary.

OR

10. (a) Apply Milne's predictor-corrector method to compute $y(0.4)$ given the differential equation $\frac{d^{2} y}{d x^{2}}=1+\frac{d y}{d x}$ and the following table of initial values:

x	0	0.1	0.2	0.3
y	1	1.1103	1.2427	1.3990
y^{\prime}	1	1.2103	1.4427	1.6990

(b) Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y}-\frac{d}{d x}\left[\frac{\partial f}{\partial y^{\prime}}\right]=0$
(c) Find the extremal for the functional $\int_{0}^{\pi / 2}\left(y^{2}-y^{\prime 2}-2 y \sin x\right) d x ; y(0)=0, y(\pi / 2)=1$.
(06 Marks)

