Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN \square

Third Semester B.E.Degree Examination
 Transform Calculus, Fourier Series and Numerical Techniques

(Common to all Programmes)
Time: 3 Hrs
Max.Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) Find the Laplace transform of : (i) $3^{t}+(4 t+5)^{3}$ (ii) $t e^{-4 t} \sin 3 t$ (ii) $(\cos a t-\sin b t) / t$
(10 Marks)
(b) The triangular wave function $f(t)$ with period " $2 a$ " is defined by $f(t)=\left\{\begin{array}{cl}t, & 0 \leq t<a \\ 2 a-t, & a \leq t<2 a\end{array}\right.$ Show that $L\{f(t)\}=\left(1 / s^{2}\right) \tanh (a s / 2)$.
(05 Marks)
(c) Using Laplace transform method, solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=5 \sin t, y(0)=0=y^{\prime}(0)$.
(05 Marks)

OR

2. (a) Find the inverse Laplace transform of (i) $\left\{\frac{1}{s(s+1)}\right\}$ (ii) $\left\{(s+1) /\left(s^{2}+6 s+9\right)\right\}$
(iii) $[\log \{(s+a) /(s+b)\}]$
(10 Marks)
(b) Express $f(t)=\left\{\begin{array}{cc}\sin t, & 0<t \leq \pi / 2 \\ \cos t & t>\pi / 2\end{array}\right.$ in terms Heaviside's unit step function and hence find its

Laplace transform.
(05 Marks)
(c) Find the Laplace transform of $\frac{4}{\left(s^{2}+2 s+5\right)^{2}}$, using convolution theorem.

Module-2

3. (a) An alternating current $I(x)$ after passing through a rectifier has the form $I(x)=\left\{\begin{array}{l}I_{0} \sin x, \text { for } 0 \leq x<\pi \\ 0, \quad \text { for } \pi<x \leq 2 \pi,\end{array}\right.$ where I_{0} is the maximum current and the period is 2π. Express $I(x)$ as a Fourier series.
(07 Marks)
(b) Find the half-range sine series of $f(x)=\frac{\sinh a x}{\sinh a \pi}$ the interval $(0, \pi)$.
(06 Marks)
(c) Find the Fourier series expansion of $f(x)=x(1-x)(2-x)$ the interval $0 \leq x \leq 2$. Hence deduce the sum of the series that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots$
(07 Marks)

OR

4. (a) In an electrical research laboratory, scientists have designed a generator which can generate the following currents at different time instant t, in the period T :

Time t (in sec)	0	$T / 6$	$T / 3$	$T / 2$	$2 T / 3$	$5 T / 6$	T
$f(x)$	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Determine the direct current part and amplitude of the first harmonic from the above data.
(07 Marks)
(b) Find the half-range sine series of $f(x)=\left\{\begin{array}{lll}\sin x & \text { for } 0 \leq x<\pi / 4 \\ \cos x, & \text { for } & \pi / 4<x \leq \pi / 2\end{array}\right.$
(c) Obtain the Fourier series of $f(x)=x(2 \pi-x)$ valid in the interval $(0,2 \pi)$.
(06 Marks)
(07 Marks)

Module-3

5. (a) If $f(x)=\left\{\begin{array}{ll}a^{2}-x^{2}, & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a\end{array}\right.$, find the infinite Fourier transform of $f(x)$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x$
(07 Marks)
(b) Find the Fourier sine transform of $f(x)= \begin{cases}x, & \text { if } 0<x<1 \\ 2-x, & \text { if } 1<x<2 \\ 0, & \text { if } x>2\end{cases}$
(c) Solve $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}, u_{0}=0=u_{1}$, by using z-transforms.
(07 Marks)

OR

6. (a) If $f(x)=\left\{\begin{array}{ll}1, & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a\end{array}\right.$, find the infinite Fourier transform of $f(x)$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$
(07 Marks)
(b) Find the z-transform of $2 n+\sin (n \pi / 4)+1$
(c) Find the inverse z-transform of $18 z^{2} /[(2 z-1)(4 z+1)]$

Module-4

7. (a) Solve $\frac{d y}{d x}=x^{3}+y, y(1)=1$ using Taylor's series method considering up to fourth degree terms and, find the $y(1.1)$.
(b) Use Runge - Kutta method of fourth order to solve $\frac{d y}{d x}=3 x+\frac{y}{2}, y(0)=1$, to find $y(0.2)$.
(Take $h=0.2$).
(06 Marks)
(c) Given $\frac{d y}{d x}=x^{2}(1+y)$ and $y(1)=1, y(1.1)=1.2330, y(1.2)=1.5480, \& y(1.3)=1.9790$ find $y(1.4)$, using Adam-Bashforth predictor-corrector method.
(07 Marks)

OR

8. (a) Use modified Euler's method to compute $y(0.2)$, given $\frac{d y}{d x}-x y^{2}=0$ under the initial condition $y(0)=2$.Perform three iterations at each step, taking $h=0.1$.
(07 Marks)
(b) Use fourth order Runge - Kutta method, to find $y(0.2)$ with $h=0.2$, given $\frac{d y}{d x}=\sqrt{x+y}, y(0)=1$,
(06Marks)
(c) Apply Milne's predictor-corrector formulae to compute $y(2.0)$ given $\frac{d y}{d x}=\frac{1}{2}(x+y)$ with

x	0.0	0.5	1.0	1.5
y	2.0000	2.6360	3.5950	4.9680

Module-5

9. (a) Using Runge - Kutta method, solve $\frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y^{2}$, for $x=0.2$, correct to four decimal places, using initial conditions $y(0)=1, y^{\prime}(0)=0$.
(07 Marks)
(b) Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y}-\frac{d}{d x}\left[\frac{\partial f}{\partial y^{\prime}}\right]=0$
(06 Marks)
(c) Find the extremal of the functional $\int_{0}^{\pi}\left(y^{2}-y^{2}+4 y \cos x\right) d x ; y(0)=0=y(\pi)$
(07 Marks)

OR

10. (a) Given the differential equation $2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-4 x=0$ and the following table of initial values:

x	1	1.1	1.2	1.3
y	2	2.2156	2.4649	2.7514
y^{\prime}	2	2.3178	2.6725	2.0657

compute $y(1.4)$ by applying Milne's predictor-corrector method.
(07 Marks)
(b) On what curves can the functional $\int_{0}^{\pi / 2}\left(y^{\prime 2}-y^{2}+2 x y\right) d x, ; y(0)=0, y(\pi / 2)=0$ be extremized?
(06 Marks)
(c) Prove that geodesics of a plane surface are straight lines.

