# Model Question Paper-2 with effect from 2018-19 <br> (CBCS Scheme) 

USN $\square$

# Second Semester B.E. Degree Examination Advanced Calculus and Numerical Methods 

(Common to all Branches)
Time: 3 Hrs

Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

## Module-1

1. (a) Find the directional derivative of $\phi=4 x z^{3}-3 x^{2} y^{2} z$ at $(2,-1.2)$ along $2 \vec{i}-3 \vec{j}+6 \vec{k}$.
(06 Marks)
(b) Find the values of $a$ and $b$ such that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ are orthogonal at the point $(1,-1,2)$.
(07 Marks)
(c) Show that $\vec{F}=\frac{x \vec{i}+y \vec{j}}{x^{2}+y^{2}}$ is both solenoidal and irrotational.

## OR

2. (a) Use Green's theorem to evaluate $\int_{C}\left(x^{2}+y^{2}\right) d x+3 x^{2} y d y$, where $C$ is the circle $x^{2}+y^{2}=4$, traced in the positive sense.
(06 Marks)
(b) Using Stoke's theorem, evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=y \vec{i}+z \vec{j}+x \vec{k}$ and $C$ is the boundary of upper half of the sphere $x^{2}+y^{2}+z^{2}=1$.
(07 Marks)
(c) Find the flux of $\vec{F}=\vec{i}-\vec{j}+x y z \vec{k}$, through the circular region $S$ obtained by cutting the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ with the plane $y=x$.

## Module-2

3. (a) Solve: $\left(D^{2}+4\right) y=x^{2}+\cos 2 x$, where $D=\frac{d}{d x}$
(b) $\frac{d^{2} y}{d x^{2}}+y=\sec x \tan x$, using the method of variation of parameters.
(07 Marks)
(c) Solve: $\left(x^{2} D^{2}+x D+9\right) y=3 x^{2}+\sin (3 \log x)$, where $D=\frac{d}{d x}$

OR
4. (a) Solve: $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{3}$
(06 Marks)
(b) Solve: $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=8 x^{2}+4 x+1$
(c) In an L-C-R circuit, the charge $q$ on a plate of a condenser is given by $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E \sin p t$. The circuit is tuned to resonance so that $p^{2}=1 / L C$. If initially the current $i$ and the charge q be zero, show that for small values of $R / L$, the current in the circuit at time $t$ is given by $(E t / 2 L) \sin p t$.
(07 Marks)

## Module-3

5. (a) Form the partial differential equation by eliminating the arbitrary functions from

$$
\begin{equation*}
z=y f(x)+x \varphi(y) \tag{06Marks}
\end{equation*}
$$

(b) Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, for which $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=0$ and $z=0$ when $y$ is odd.
(c) Solve one dimensional wave equation, using the method of separation of variables.
(07 Marks)

## OR

6. (a) Form the partial differential equation by eliminating the arbitrary constants from

$$
\begin{equation*}
2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \tag{06Marks}
\end{equation*}
$$

(b) Solve: $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$
(c) Derive one-dimensional heat equation in the standard form.

## Module-4

7. (a) Use Rodrigues's formula to show that $P_{3}(\cos \theta)=\frac{1}{8}(3 \cos \theta+5 \cos 3 \theta)$
(06 Marks)
(b) Solve Legendre's differential equation leading to $P_{n}(x)$.
(07 Marks)
(c) Discuss the nature of the series : $\frac{1}{2}+\left(\frac{2}{3}\right) x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots$

## OR

8. (a) Express $f(x)=x^{3}+2 x^{2}-x-3$ in terms of Legendre polynomials.
(06 Marks)
(b) With usual notation, show that (i) $J_{1 / 2}(x)=\sqrt{(2 / \pi x)} \sin x$ (ii) $J_{-1 / 2}(x)=\sqrt{(2 / \pi x)} \cos x$.
(c) Test for the convergence or divergence of the series : $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+\ldots$

## Module-5

9. (a) Find a real root of $x e^{x}-\cos x=0$, correct to three decimal places lying in the interval $(0.5,0.6)$, using Regula-Falsi method.
(06 Marks)
(b) Using divided difference formula, fit a polynomial for the following data:
(07 Marks)

| $x$ | 2 | 4 | 5 | 6 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 10 | 96 | 196 | 350 | 868 | 1746 |

(c) Evaluate $\int_{0}^{\pi / 2} \sqrt{\sin x} d x$ using Simpson's $(1 / 3)^{\text {rd }}$ rule, taking 10 equal parts.
(07 Marks)

## OR

10. (a) Find a real root of the equation $x^{3}+x^{2}+3 x+4=0$ near $x=-1$ correct to four decimal places, using Newton- Raphson method.
(b) Use an appropriate interpolation formula to compute $f(42)$ using the following data:
(07 Marks)

| $x$ | 40 | 50 | 60 | 70 | 80 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 184 | 204 | 226 | 250 | 276 | 304 |

(c) Use Weddle's rule to evaluate $\int_{0}^{1} \frac{x d x}{1+x^{2}}$, by taking seven ordinates.
(07 Marks)

