Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Third Semester B.E.Degree Examination Additional Mathematics-I

(Common to all Programmes)

Time: 3 Hrs

Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I

1. (a) Show that $(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta - i \sin \theta)^n = 2^{n+1}$	$\cos^n(\theta/2)\cos(n\theta/2).$ (6)	(08 Marks)
_		

(b) Express $\sqrt{8} + 4i$ in the polar form and hence find its modulus and amplitude. (06 Marks) $1 \pm \sqrt{3}i$

(c) Find the argument of
$$\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$$
. (06 Marks)

OR

\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	
A = i - 3j + 2k and $B = 2i - j + k$. (08))8 Marks)
(b) If $\vec{A} = \vec{i} - 2\vec{j} + \vec{k}$ and $\vec{B} = \vec{i} + 2\vec{j} - \vec{k}$, show that $(\vec{A} + \vec{B})$ and $(\vec{A} - \vec{B})$ are orthogonal. (06 I	Marks)
(c) Show that the position vectors of the vertices of a triangle $\vec{A} = 3(\sqrt{3}\vec{i} - \vec{j})$, $\vec{B} = 6\vec{j}$ and	

 $\vec{C} = 3(\sqrt{3}\vec{i} + \vec{j})$, form an isosceles triangle. (06 Marks)

Module-II

3. (a) Obtain the Maclaurin's series expansion of $\log \sec x$ up to the terms containing x^6 . (08 Marks) (b) Prove that $xu_x + yu_y = \sin 2u$, where $u = \tan^{-1}[(x^3 + y^3)/(x + y)]$, using Euler's theorem, (06 Marks) (c) If u = f(x/y, y/z, z/x), show that $xu_x + yu_y + zu_z = 0$ (06 Marks)

OR

4. (a) Prove that $\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{24} + \dots$, by using Maclaurin's series notion. (08 Marks)

(b) Using Euler's theorem, prove that $xu_x + yu_y = 3\tan u$, where $u = \sin^{-1}\left[\left(x^2y^2\right)/(x+y)\right]$. (06 Marks)

(c) If
$$u = e^x \sin y, v = x + \log \sin y$$
, find $J\left(\frac{u, v}{x, y}\right)$. (06 Marks)

Module-III

5. (a) A particle moves along a curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time variable. Determine

the components of velocity and acceleration vectors at t = 0 in the direction of $\vec{i} + \vec{j} + \vec{k}$. (08 Marks)

Page 1 of 2

18MATDIP31

18MATDIP31

(06 Marks)

(b) Find the unit normal to the surface
$$x^2y + 2xz = 4$$
 at $(2, -2, 3)$ (06 Marks)

(c) Show that the vector field $\vec{F} = (4xy - z^3)\vec{i} + (2x^2)\vec{j} - (3xz^2)\vec{k}$ is irrotational. (06 Marks)

OR

6. (a) If
$$\vec{F} = (x + y + z)\vec{i} + \vec{j} - (x + y)\vec{k}$$
, show that $\vec{F} \times curl\vec{F} = 0$ (08 Marks)

(b) If
$$\phi(x, y, z) = x^3 + y^3 + z^3 - 3xyz$$
, find $\nabla \phi \& |\nabla \phi|$ at (1,-1,2) (06 Marks)

(c) Show that vector field $\vec{F} = \left[(xi + yj)/(x^2 + y^2) \right]$ is solenoidal.

Module-IV

7. (a) Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{n} x dx, (n > 0).$ (08 Marks)

(b) Evaluate:
$$\int_{0}^{\infty} \frac{x^2 dx}{(1+x^2)^3}$$
 (06 Marks)

(c) Evaluate $\iint_{R} xydxdy$ where *R* is the first quadrant of the circle $x^{2} + y^{2} = a^{2}, x \ge 0, y \ge 0.$ (06 Marks)

OR

8. (a) Obtain a reduction formula for
$$\int_{0}^{\pi/2} \cos^{n} x dx , (n > 0)$$
 (08 Marks)

(b) Evaluate :
$$\int_{0}^{2a} x^{3} \sqrt{2ax - x^{2}} dx$$
 (06 Marks)

(c) Evaluate:
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$$
 (06 Marks)

Module-V

9. (a) Solve:
$$(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$$
 (08 Marks)

(b) Solve:
$$[y \cos x + \sin y + y]dx + [\sin x + x \cos y + x]dy = 0$$
 (06 Marks)

(c) Solve:
$$(1 + y^2)dx = (\tan^{-1} y - x)dy$$
 (06 Marks)

OR

10. (a) Solve:
$$(x^3 \cos^2 y - x \sin 2y) dx = dy$$
(08 Marks)

(b) Solve: $(x + 3y - 4) dx + (3x + 9y - 2) dy = 0$
(06 Marks)

(c) Solve: $dy + (y \cot x - \cos x) dx = 0$
(06 Marks)
