Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN 18MATDIP31

Third Semester B.E.Degree Examination

Additional Mathematics-I
(Common to all Programmes)
Time: 3 Hrs Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I
1. (a) Show that (1+cos@+isin@)" +(1+cos@—ising)" = 2" cos"(6/2)cos(n6/2). (08 Marks)
(b) Express /8 +4i in the polar form and hence find its modulus and amplitude. (06 Marks)
. 1 i
(c) Find the argument of * \/§| : (06 Marks)
1-4/3i
OR
2. (a) Define dot product between two vectors A and B. Find the sine of the angle between the vectors
A=7-3]+2k and B=2i — j+k. (08 Marks)
(b) If A=i —2j+k and B=7 +2j —k, show that (A+ I§) and (A— é)are orthogonal. (06 Marks)
(c) Show that the position vectors of the vertices of a triangle A= 3(\/57 — T), B=6]and
C= 3(\/§T + T), form an isosceles triangle. (06 Marks)
Module-II
3. (a) Obtain the Maclaurin’s series expansion of logsecx up to the terms containing x°. (08 Marks)
(b) Prove that xu, +yu, =sin2u ,where u=tan™ [(x3 + y3)/ (x+y)], using Euler’s theorem, (06 Marks)
(©) If u="f(x/y,y/z,z/x), showthat xu, +yu, +zu, =0 (06 Marks)
OR
2 3 4
4. (a) Prove that v1+sin2x =1+ x— X? — % + % + ..., by using Maclaurin’s series notion. (08 Marks)
(b) Using Euler’s theorem, prove that xu, + yu, = 3tanu ,where u =sin™ [(Xzyz)/ (x+ y)] (06 Marks)
(c) If u=e”siny,v=x+logsiny, find J(EJ (06 Marks)
X,y
Module-lll

5. (a) A particle moves along acurve x =€,y =2cos3t,z = 2sin3t where t is the time variable. Determine

the components of velocity and acceleration vectors at t = 0 in the direction of T + j + k. (08 Marks)
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(b) Find the unit normal to the surface x?y +2xz =4 at (2,-2,3)
(c) Show that the vector field F = (4xy —z° | +(2x? )j — (3x2? )K is irrotational.

OR
6. (a)If F=(x+y+2z)i +]—(x+y)k,show that F xcurlF =0

(o) If #(x,y,2)=x*+y® +2° —3xyz,find Vg &|V¢| at (1L-12)
(c) Show that vector field F = [(xi + yj)/(x* + y2)] is solenoidal.

Module-IV
/2
7. (&) Obtain a reduction formula for jsin“ xdx, (n > 0).

(b) Evaluate: Jx_dx

1+x)

(c) Evaluate H xydxdy where R is the first quadrant of the circle x* +y*> =a®, x>0,y >0.
R

OR

7/2
8. (a) Obtain a reduction formula for J.cos” xdx ,(n > 0)

2a
(b) Evaluate : _[x3\/ 2ax — x” dx
0

1zx+z
(c) Evaluate: I I I (X+ y + z )dydxdz
-10 x-z
Module-V
9. (a) Solve: (4xy +3y% - x)dx +x(x+2y)dy =0
(b) Solve: [ycosx+siny + yldx +[sin x + xcos y + x]dy = 0

(c) Solve: (1+ y? )dx = (tan’l y— x)dy

OR

10. (a) Solve: (x3 cos” y — Xsin 2y)dx =dy
(b) Solve: (x+3y —4)dx+(3x+9y —2)dy =0
(c) Solve: dy +(ycotx—cosx)dx =0
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