\square

Third Semester B.E.Degree Examination
 Additional Mathematics-I

(Common to all Programmes)
Time: 3 Hrs
Max.Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I

1. (a) Show that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}(\theta / 2) \cos (n \theta / 2)$.
(08 Marks)
(b) Express $\sqrt{8}+4 i$ in the polar form and hence find its modulus and amplitude.
(c) Find the argument of $\frac{1+\sqrt{3} i}{1-\sqrt{3} i}$.

OR

2. (a) Define dot product between two vectors A and B. Find the sine of the angle between the vectors
$\vec{A}=\vec{i}-3 \vec{j}+2 \vec{k}$ and $\vec{B}=2 \vec{i}-\vec{j}+\vec{k}$.
(08 Marks)
(b) If $\vec{A}=\vec{i}-2 \vec{j}+\vec{k}$ and $\vec{B}=\vec{i}+2 \vec{j}-\vec{k}$, show that $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ are orthogonal.
(c) Show that the position vectors of the vertices of a triangle $\vec{A}=3(\sqrt{3} \vec{i}-\vec{j}), \vec{B}=6 \vec{j}$ and $\vec{C}=3(\sqrt{3} \vec{i}+\vec{j})$, form an isosceles triangle.
(06 Marks)

Module-II

3. (a) Obtain the Maclaurin's series expansion of $\log \sec x$ up to the terms containing x^{6}.
(08 Marks)
(b) Prove that $x u_{x}+y u_{y}=\sin 2 u$, where $u=\tan ^{-1}\left[\left(x^{3}+y^{3}\right) /(x+y)\right]$, using Euler's theorem,
(06 Marks)
(c) If $u=f(x / y, y / z, z / x)$, show that $x u_{x}+y u_{y}+z u_{z}=0$

OR

4. (a) Prove that $\sqrt{1+\sin 2 x}=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{24}+\ldots$, by using Maclaurin's series notion.
(08 Marks)
(b) Using Euler's theorem, prove that $x u_{x}+y u_{y}=3 \tan u$, where $u=\sin ^{-1}\left[\left(x^{2} y^{2}\right) /(x+y)\right]$.
(06 Marks)
(c) If $u=e^{x} \sin y, v=x+\log \sin y$, find $J\left(\frac{u, v}{x, y}\right)$.

Module-III

5. (a) A particle moves along a curve $x=e^{-t}, y=2 \cos 3 t, z=2 \sin 3 t$ where t is the time variable. Determine the components of velocity and acceleration vectors at $t=0$ in the direction of $\vec{i}+\vec{j}+\vec{k}$.
(08 Marks)
(b) Find the unit normal to the surface $x^{2} y+2 x z=4$ at $(2,-2,3)$
(c) Show that the vector field $\vec{F}=\left(4 x y-z^{3}\right) \vec{i}+\left(2 x^{2}\right) \vec{j}-\left(3 x z^{2}\right) \vec{k}$ is irrotational.

OR

6. (a) If $\vec{F}=(x+y+z) \vec{i}+\vec{j}-(x+y) \vec{k}$, show that $\vec{F} \times \operatorname{curl} \vec{F}=0$
(b) If $\phi(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$, find $\nabla \phi \&|\nabla \phi|$ at $(1,-1,2)$
(c) Show that vector field $\vec{F}=\left[(x i+y j) /\left(x^{2}+y^{2}\right)\right]$ is solenoidal.
(08 Marks)
(06 Marks)
(06 Marks)

Module-IV

7. (a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
(b) Evaluate: $\int_{0}^{\infty} \frac{x^{2} d x}{\left(1+x^{2}\right)^{3}}$
(06 Marks)
(c) Evaluate $\iint_{R} x y d x d y$ where R is the first quadrant of the circle $x^{2}+y^{2}=a^{2}, x \geq 0, y \geq 0$.

OR

8. (a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$
(08 Marks)
(b) Evaluate : $\int_{0}^{2 a} x^{3} \sqrt{2 a x-x^{2}} d x$
(c) Evaluate: $\int_{-1}^{1} \int_{0}^{z+z}(x+y+z) d y d x d z$
(06 Marks)
(06 Marks)

Module-V

9. (a) Solve: $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0$
(08 Marks)
(b) Solve: $[y \cos x+\sin y+y] d x+[\sin x+x \cos y+x] d y=0$
(06 Marks)
(c) Solve: $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

OR

10. (a) Solve: $\left(x^{3} \cos ^{2} y-x \sin 2 y\right) d x=d y$
(08 Marks)
(b) Solve: $(x+3 y-4) d x+(3 x+9 y-2) d y=0$
(c) Solve: $d y+(y \cot x-\cos x) d x=0$
