USN \square

Third Semester B.E.Degree Examination
 Additional Mathematics-I

(Common to all Programmes)
Max.Marks: 100
Time: 3 Hrs
rom each module.

Module-I

1. (a) Show that $\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right)$.
(08 Marks)
(b) Express $\sqrt{7}+9 i$ in the polar form and hence find its modulus and amplitude.
(06 Marks)
(c) Find the real part of $\frac{1}{1+\cos \theta+i \sin \theta}$
(06 Marks)
OR
2. (a) If $\vec{A}=\vec{i}+2 \vec{j}+3 \vec{k}, \vec{B}=-\vec{i}+2 \vec{j}+\vec{k}$ and $\vec{C}=3 \vec{i}+\vec{j}$, find p such that $\vec{A}+p \vec{B}$ is perpendicular to \vec{C}.
(08 Marks)
(b) Find the area of the parallelogram whose adjacent sides are the vectors $\vec{A}=2 \vec{i}+4 \vec{j}-5 \vec{k}$ and $\vec{B}=\vec{i}+2 \vec{j}+3 \vec{k}$.
(c) If $\vec{A}=4 \vec{i}+3 \vec{j}+\vec{k}$ and $\vec{B}=2 \vec{i}-\vec{j}+2 \vec{k}$, find a unit vector N perpendicular to both \vec{A} and \vec{B} such that \vec{A}, \vec{B} and N form a right handed system.
(06 Marks)

Module-II

3. (a) Obtain the Maclaurin's series expansion of $e^{m \cos ^{-1} x}$ up to the terms containing x^{5}.
(08 Marks)
(b) Prove that $x u_{x}+y u_{y}=3$, where $u=\log \left[\left(x^{4}+y^{4}\right) /(x+y)\right]$, using Euler's theorem,
(06 Marks)
(c) If $u=f(x-y, y-z, z-x)$, show that $u_{x}+u_{y}+u_{z}=0$

OR

4. (a) Prove that $\log (\sec x+\tan x)=x+\frac{x^{3}}{6}+\frac{x^{5}}{24}+\ldots$, by using Maclaurin's series notion.
(08 Marks)
(b) Using Euler's theorem, prove that $x u_{x}+y u_{y}=-2 \cot u$, where $u=\cos ^{-1}\left[\left(x^{3}+y^{3}\right) /(x+y)\right]$.
(06 Marks)
(c) If $u=2 x y, v=x^{2}-y^{2} \& x=r \cos \theta, y=r \sin \theta$, compute $\frac{\partial(u, v)}{\partial(r, \theta)}$.

Module-III

5. (a) Aparticle moves on the curves $x=1-t^{3}, y=1+t^{2}, z=2 t-5$ where t is the time variable. Determine the components of velocity and acceleration vectors at $t=1$ in the direction of $\vec{i}+2 \vec{j}+\vec{k}$.
(08 Marks)
(b) Find the unit normal to the surface $x y^{3} z^{2}=4$ at $(1,-1,2)$
(c) Show that the vector field $\vec{F}=(x+y+z) \vec{i}+(x+2 y-z) \vec{j}+(x-y+2 z) \vec{k}$ is irrotational.

OR

6. (a) Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ where $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
(b) If $\vec{F}=\left(3 x^{2} y-z\right) i+\left(x z^{3}+y^{4}\right) j-2 x^{3} z^{2} k$, find $\operatorname{grad}(\operatorname{div} \vec{F})$ at $(2,-1,0)$
(c) Find the value of ' a ' such that vector field $\vec{F}=(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+a z) \vec{k}$ is solenoidal.

Module-IV

7. (a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$
(08 Marks)
(b) Evaluate: $\int_{0}^{a} \frac{x^{2} d x}{\left(1+x^{6}\right)^{7 / 2}}$.
(06 Marks)
(c) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$, where R is the region bounded by $y=x \& y^{2}=4 x$
(06 Marks)

OR

8. (a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
(b) Evaluate : $\int_{0}^{a} x \sqrt{a x-x^{2}} d x$
(06 Marks)
(c) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$
(06 Marks)

Module-V

9. (a) Solve: $y(2 x-y+1) d x+x(3 x-4 y+3) d y=0$
(08 Marks)
(b) Solve: Solve: $\left\lfloor y^{2} e^{x y^{2}}+4 x^{3}\right\rfloor d x+\left[2 x y e^{x y^{2}}-3 y^{2}\right] d y=0$
(06 Marks)
(c) Solve: $d x+\left(x-e^{-y} \sec ^{2} y\right) d y=0$
(06 Marks)

OR

10. (a) Solve: $\tan y d y=\left(\cos y \cos ^{2} x-\tan x\right) d x$
(08 Marks)
(b) Solve: $[y(1+1 / x)+\cos y] d x+[x+\log x-x \sin y] d y=0$
(c) Solve: $\left(1+x^{2}\right)(d y-d x)=2 x y d y$
