Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN 18MATDIP31
Third Semester B.E.Degree Examination
Additional Mathematics-I
(Common to all Programmes)
Time: 3 Hrs Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I

1. (a) Show that 1+s!n9+!cose = C0S n—”—n@ +isin n—”—n@).
1+sin@—icosé 2 2

(b) Express +/7 +9i in the polar form and hence find its modulus and amplitude.
1

(c) Find the real part of —
1+cos@+ising

OR
2. @ If A= +2j+3k, B=—i +2j+kandC =3i + J, find p such that A+ pBis
perpendicular to C.
(b) Find the area of the parallelogram whose adjacent sides are the vectors
A=2i +4]-5k and B=7+2] +3K.
(c) If A=4i+3j+kand B=2i —j+2k, find a unit vector N perpendicular to both
A and B such that A, B and N form a right handed system.

Module-ll
3. (a) Obtain the Maclaurin’s series expansion of €™ * up to the terms containing x°.

(b) Prove that xu, + yu, =3,where u = log [(x4 + y“)/(x +y)), using Euler’s theorem,
© Ifu=f(x—y,y—z2z-x), showthat u, +u, +u, =0

OR

x®  x° . . . .
4. (a) Prove that log(sec x +tanx) = x + TR by using Maclaurin’s series notion.

(b) Using Euler’s theorem, prove that xu, + yu, = —2cotu ,where u = cos [(x3 + yg)/ (x+y)].

() If u=2xy,v=x"~y* & x=rcosd,y=rsing, compute o(u,v)

or,0)

Module-Ill
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5. (a) Aparticle moves on the curves x =1—t%,y=1+1t?,z =2t -5 where t is the time variable. Determine

the components of velocity and acceleration vectors at t = 1 in the direction of i +2] +k.

(08 Marks)
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(b) Find the unit normal to the surface xy®z* =4 at (1,-1,2)

(c) Show that the vector field F =(x+y+2z)i +(x+2y—2)j+(x—y+2z)k isirrotational.

OR
6. (a) Find divF and curlF where F =V(x® +y® +z® —3xyz)
(b) IfF = (3x%y —2)i + (x2® + y*) j — 2x3z%k, find grad(divF) at (2,—1 0)

(c) Find the value of ‘a’such that vector field F = (x+3y)i +(y —2z)j +(x+az)k is solenoidal.

Module-IV
7/2
7. (a) Obtain a reduction formula for J.cos” xdx ,(n > 0)
0

(b) Evaluate: jl(lﬁ(%
0

(c) Evaluate J'J' (x2 + yz)dxdy, where R is the region bounded by y = x & y? = 4x
R

OR

/2
8. (a) Obtain a reduction formula for jsin" xdx, (n > 0).
0
(b) Evaluate : jx\/ax —x%dx
0

Vi 1oy dxdydz

.([ »!‘ \/1—x2—y2—22

(c) Evaluate:

O L

Module-V

9. (a) Solve: y(2x—y+1)dx+x(3x—4y +3)dy =0

(b) Solve: Solve: [yzeXyz + 4x3}1x + [nye W' _3y? }jy =0

(c) Solve: dx + (x —e ¥ sec? y)dy =0

OR

10. (a) Solve: tanydy = (cos ycos® X —tan x)dx

(b) Solve: [y(1+1/x)+cos yJdx + [x + log x — xsin yJdy =0

(c) Solve: (1+ X2 Xdy —dx) = 2xydy

*kkkk
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