Module-2

FINITE ELEMENT ANALYSIS

 (17 ME 61) Compiled by: BALARAJ V Assistant ProfessorME Dept, RYMEC, Ballari${ }^{\text {anmana }} 04$

Module-2

One dimensional finite elements, Bar \& Truss elements;

-Linear elements, Principle of minimum potential energy, admissible displacement function, stiffness matrix, strain matrix, static analysis using elimination method, penalty method, boundary conditions and assembly of load vector,
-Convergence and Compatibility conditions, Shape functions for 1D linear, quadratic and Truss elements

Interpolation models

-Interpolation models are defined as the appropriate mathematical model or trial function which represents the displacement variation within the element.
-The following types of interpolation models are used in Variational methods/FEM.
1.Trigonometric functions
2.Polynomial function

Among the above, polynomial models are most widely used due to ease of formulating, calculating (differentiating \& intearating) \& hetter

Polynomial form of interpolation model

A polynomial type of interpolation model assumed to represent the displacement variation within an element, then the dispalcement can for be expressed as ;
$u(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \ldots \ldots \ldots .$. (for 1-D element)
$u(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x^{2}+a_{4} x y+a_{5} y^{2}+a_{6} x^{2} y+a_{7} x y^{2}+\ldots \ldots \ldots$.
(for 2-D element)
If in the above polynomials, terms upto $x^{1} \& y^{1}$ are considered, it is said to be a linear model.

If terms upto $x^{2} \& y^{2}$ are considered, it is said to be a quadratic model \& if terms upto $x^{3} \& y^{3}$ are considered, it is said to be a cubic model \& so on.

Convergence Criteria

- Convergence implies results obtained by FEA solution reaches the exact solution. It depends on the proper selection of displacement field variable \& order of the interpolation polynomials.
- The convergence of the finite element solution can be achieved if the following three conditions are fulfilled by the assumed displacement function.

1. The displacement function must be continuous within the elements. This can be ensured by choosing a suitable polynomial. For example, for
an n degrees of polynomial, displacement function in 1-D problem can be chosen as:
${ }_{0} \quad 1_{2}^{u}(x)={ }_{3} a \quad+a_{n} x_{R A D} a \quad x^{2}+a x^{3} \ldots \ldots \ldots a x^{n}$

Convergence Criteria....

2.The displacement function must be capable of rigid body displacements of the element. The constant term used in the polynomial $\left(a_{0}\right)$ ensures this condition. (Even for $x=0$, the displacement will be equal to a_{0})
3.The displacement function must include the constant strains states of the element. As element becomes infinitely small, strain should be constant in the element. Hence, the displacement function should include terms for representing constant strain states. The second term used in the polynomial $\left(a_{1}\right)$ ensures this condition. (As differentiation of $\mathrm{a}_{1} \mathrm{x}$ will be a_{1}, a constant)

Compatibility

- Displacement should be compatible between adjacent elements. There should not be any discontinuity or overlapping when deformed.
- The adjacent elements must deform without causing openings, overlaps or discontinuities between the elements.

Elements which satisfy all the three convergence requirements and compatibility condition are called Compatible or Conforming elements.

Criteria for selection of order of interpolation polynomial

-The number of generalized coordinates should be equal to the number of degrees of freedom of the elements.
-The pattern of variation of the polynomial should be independent of the local coordinate system. (Geometric or spatial isotropy or Geometric invariance).
-The interpolation polynomial should satisfy the convergence requirements.
-Displacement shape should not change with a change in local coordinate system. This can be achieved if polynomial is balanced in case all terms cannot be completed.

- This „balanced" representation can be achieved with the help of Pascal triangle in case of a 2 D polynomial. The geometric invariance can be ensured by the selection of the corresponding order of terms on either side of the axis of symmetry.

Geometric invariance (or Spatial isotropy); Pascal's triangle

Pascal's triangle

Geometric invariance (or isotropy); Pascal's triangle
Ex : If a cubic model is assumed, displacement polynomial using Pascal's triangle is ;
$U(x, y)_{y}=a \quad \underset{6}{+} a x+a \quad y+a x^{2}+a x y_{3}+a \quad y^{2}+a x_{3}^{3}+a$ or
$X y(x, y)=a \quad \underset{4}{+}=a x+{ }_{2} a \quad y+a x_{3}^{2}+a x y_{4}+a \quad y^{2}+a x^{2} y+a$

- In the above polynomials, if we interchange $x \& y$ terms, the pattern does not change.
-In both the equations, the same variable occur even after interchanging. These polynomials are known as "Balanced Polynomials"

Coordinate systems

- Co ordinate system is a space where configuration of a body is represented.

Ex: Cartesian Coordinate system, Polar Coordinate system

- In FEM, these general coordinate systems are further classified as;

1. Global Coordinate system
2. Local Coordinate system
3. Natural coordinate system

Global Coordinate system

- The global coordinate system corresponds to the entire body and used to define the points on the entire body.
- Fig shows method of representation in global coordinate
system.

1-D Global coordinate system
2-D Global coordinate system

Local Coordinate system

- A local coordinates system whose origin is located within the element in order to simplify the algebraic manipulations in the derivation of the element matrix.
- Local coordinate system corresponds to a particular element in the body, and the numbering is done to that particular element neglecting the entire body .

1-D Local coordinate system
2-D Local coordinate system

Natural Coordinate system

- Natural coordinate system - Similar to local coordinate system but a node is expressed by a dimensionless set of numbers whose magnitude never exceeds unity.

Relation between global \& Natural Coordinate system

Consider an one dimensional bar element represented in natural coordinates as shown in fig.
Also the variation of natural coordinate is as shown in fig. From similar triangles

$$
\begin{aligned}
& \mathrm{ABE} \& \mathrm{ACD}, \stackrel{A B}{A C}=B E \\
& \Rightarrow \frac{x-x_{1}}{x_{2}-x_{1}} \frac{B+1}{2} \\
& \text { i.e. } \xi+1=\frac{2\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)} \\
& \therefore \xi=\frac{2\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}-1
\end{aligned}
$$

Shape Functions

- Shape functions are defined as the interpolation functions used to interpolate the value of the field variable (ex: displacement) at any point within the element in terms of nodal values.

Mathematically, displacement at any point within the element
is given by $u(x)=\sum^{n} N_{i} u_{i}$; where ' n ' is the number of nodes

$$
i=1
$$

N_{i} are the shape functions \& $u_{i} \quad$ are the nodal displacement

$u_{1} \& u_{2}$ are the displacements at node $1 \& 2$ respectively.

For a two dimensional model, displacement at any point is;
$u(x, y)=\left\{\begin{array}{l}|u| \\ |v|\end{array}\right\}=\left[\begin{array}{l}\sum_{i=1}^{n} N_{i} u_{i} \\ \sum_{i=1}^{n} N_{i} v_{i}\end{array}\right.$ For a three noded triangular element,
$u(x)=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3}$
$v(x)=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}$
where $N_{1}, N_{2} \& N_{3}$ are the shape functions, $u_{1}, u_{2} \& u_{3} \& v_{1}, v_{2} \& v_{3}$ are the nodal displacements in x and y directions.

Shape Functions for 1 D bar element In terms of Cartesian coordinates

Consider a 1-D bar element of length l_{e} with a node at each end, \& each node has one DOF.

The variation of displacement inside the element is given by $u=a_{o}+a_{1} x$ where $a_{o} \& a_{1}$ are the generalized coordinates to be found from $B C^{\prime} s$

$$
\begin{aligned}
& \text { At } x=x_{1}, u=u_{1} \& A t x=x_{2}, u=u_{2} \\
& \Rightarrow u_{1}=a_{o}+a_{1} x_{1} \& u_{2}=a_{o}+a_{1} x_{2}
\end{aligned}
$$

Thus,

$$
\left(u_{2}-u_{1}\right)=a_{1}\left(x_{2}-\right.
$$

$$
\begin{aligned}
& \left.x_{1}\right) \\
& \text { or } a_{1}=\frac{\left(u_{2}-u_{1}\right)}{\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Substituting the value of a_{1} into equation of $u_{1} ; u_{1}=a_{o} \quad+\frac{\left(u_{2}-u_{1}\right)}{\left(x_{2}-x_{1}\right)} x_{1}$
$\therefore a_{o}=u_{1}-\frac{\left(u_{2}-u_{1}\right)}{\left(x_{2}-x_{1}\right)} x_{1}=\frac{\left(u_{1} x_{2}-u_{2} x_{1}\right)}{\left(x_{2}-x_{1}\right)}$ Substituting the values of $a_{0} \& a_{1}$
into equation of u , we get $u=\frac{\left(u_{1} x_{2}-u_{2} x_{1}\right)}{\left(x_{2}-x_{1}\right)}+\frac{\left(u_{2}-u_{1}\right)}{\left(x_{2}-x_{1}\right)} x$
$u=\frac{\left(u_{1} x_{2}-u_{2} x_{1}\right)}{l_{e}}+\frac{\left(u_{2}-u_{1}\right)}{l_{e}} x$ where $l_{e}=\left(x_{2}-x_{1}\right)$ is the length of the 1 D
bar element. Re-arranging the terms, $u=\frac{\left(u_{1} x_{2}-u_{2} x_{1}\right)+u_{2} x-u_{1} x}{l_{e}}$
$u=\frac{\left(x_{2}-x\right)}{l_{e}} u_{1}+\frac{\left(x-x_{1}\right)}{l_{e}} u_{2}$ Also $u=N_{1} u_{1}+N_{2} u_{2} \quad$ Comparing the two equations;
$N_{1}=\frac{\left(x_{2}-x\right)}{l_{e}}, N_{2}=\frac{\left(x-x_{1}\right)}{l_{e}}$ Thus, values of shape functions at nodes $1 \& 2$ are
$[N]=\left[\begin{array}{ll}N_{1} & N_{2}\end{array}\right]=\left[\frac{\left(x_{2}-x\right)}{l_{e}}, \frac{\left(x-x_{1}\right)}{l_{e}}\right]$

Variation of shape function for 1 D bar element

Shape Functions for Consider a 1-D bar element of 1 D bar element In terms of Natural coordinates
length l_{e} with a node at each end, \& each node has one DOF.

The variation of displacement inside
 the element is given by $u=a_{o}+a_{1} \xi$ where $a_{o} \& a_{1}$ are the generalized coordinates to be found from $B C^{\prime} s$
At node 1; $\xi=-1, u=u_{1}$
At node $2,, \xi=+1, u=u_{2}$
$\Rightarrow u_{1}=a_{o}-a_{1} \& u_{2}=a_{o}+a_{1}$
Thus, $a_{o}=\frac{\left(u_{1}+u_{2}\right)}{2} \& a_{1}=\frac{\left(u_{2}-u_{1}\right)}{2}$

Substituting the values of $a_{o} \& a_{1}$ into equation of u;
$u=\frac{\left(u_{1}+u_{2}\right)}{2}+\frac{\left(u_{2} \ldots u_{1}\right)}{2} \xi$ Re-arranging the terms, $u=\frac{(1-\xi)}{2} u+\frac{(1+\xi)}{2} u$
Also $u=N_{1} u_{1}+N_{2} u_{2}$, Comparing the two equations; $N_{1}=\frac{(1-\xi)}{2}, N_{2}=\frac{(1+\xi)}{2}$
Values of shape functions at nodes $1 \& 2$ are $[N]=\left[\begin{array}{c}(1-\xi) \\ 2\end{array}, \frac{(1+\xi)}{2}\right]$

Properties of Shape functions

1. The value of a shape function at a specified point is unity \& at any other point its value is zero.
i.e. @ node $1, \mathrm{~N}_{1}=1$, @ node $2, \mathrm{~N}_{1}=0$ @ node $1, \mathrm{~N}_{2}=0$, @ node 2, $\mathrm{N}_{2}=1$
2.The sum of shape functions is unity.

$$
\text { i.e. } \mathrm{N}_{1}=\left(\frac{1-\xi)}{2}\right) \& \mathrm{~N}_{2}=\left(\frac{1+\xi)}{2}, \mid \Rightarrow N_{1}+N_{2}=1\right.
$$

3.The derivative of shape function is constant.
i.e. $\frac{d N_{1}}{d \xi}=-\frac{1}{2}, \quad \frac{d N_{2}}{d \xi}=+\frac{1}{2}$
Q. Determine the value of ξ and shape functions $\mathrm{N}_{1} \& \mathrm{~N}_{2}$ for a 1-D bar element as showwn in fig at point P , if;

$$
\mathrm{u}_{1}=0.003 \mathrm{~mm}, \mathrm{u}_{2}=-0.005 \mathrm{~mm}
$$

Solution: Natural coordinate ξ at point P is

$$
\xi_{@ x=30}=\frac{2\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}-1=\frac{2(30-20)}{(45-20)}-1=-0.2
$$

\therefore Values of Shape functions at P are

$$
\begin{aligned}
& N_{1}=\left(\frac{1-\xi)}{2} \neq\left(\frac{1-(-0.2))}{2} \neq 0.6\right.\right. \\
& N_{2}=\left(\frac{1+\xi)}{2} \neq\left(\frac{1+(-0.2))}{2} \neq 0.4\right.\right.
\end{aligned}
$$

\therefore Displacement at $P=u=N_{1} u_{1}+N_{2} u_{2}$
$\Rightarrow u=0.6(0.003)+0.4(-0.005)=-2 \times 10^{-4} \mathrm{~mm}$

Derivation of strain matrix \& strain-displacement [B] matrix

We know that strain in an element is given by $\varepsilon=\frac{\partial u}{d x}$
By parametric differentiation, $\varepsilon=\frac{\partial u_{\times}}{d \xi} \frac{\partial \xi}{\partial x}$
The field variable $u=N_{1} u_{1}+N_{2} u_{2} \quad$ Where $N_{1} \& N_{2}$ are shape functions given by;
$u=\left(\frac{1-\xi}{2}\right) u_{1}+\left(\frac{1+\xi}{2}\right) u_{2} \Rightarrow \frac{\partial u}{d \xi}=\frac{\left(u_{2}-u_{1}\right)}{2}$

Derivation of strain matrix \& strain-displacement [B] matrix..

Also $\xi=\frac{2\left(x-x_{1}\right)}{\partial x}-1=\underline{2\left(x-x_{1}\right)}-1 \therefore \underline{l_{e}} \underline{\underline{\xi_{2}}} \underline{\left(x_{2}-x_{1}\right)} \quad l_{e}$
where $l_{e}=$ length of element. Substituting for $\frac{\partial u}{\partial \xi} \& \frac{\partial \xi}{\partial x}$ in equation for \mathcal{E}
$\varepsilon=\left(\frac{-u_{1}+u_{2}}{2}\right) \times \frac{2}{l_{e}}$ In the matrix form, strain matrix $\varepsilon=\frac{1}{l_{e}}\left[\begin{array}{ll}-1 & 1\end{array}\right]\left\{\begin{array}{l}u_{1} \\ u_{2}\end{array}\right\}$
i.e. Strain matrix $\mathcal{E}=[B]\{u\}$, where
$[B]=\frac{1}{l_{e}}\left[\begin{array}{ll}-1 & 1] \cdots \cdots(i) \quad \text { is the strain -displacement matrix. }\end{array}\right.$
From Hooke's law, stress $\sigma=E \mathcal{E} \Rightarrow \sigma=\boldsymbol{E}[\boldsymbol{B}]\{\boldsymbol{u}\}$
Eqn (ii) is the stress matrix for $1-D$ bar element.

Derivation of stiffness matrix using strain-displacement matrix

Strain energy for an element is given by $S E=\frac{1}{\int} \int \delta d V$
For 1-D bar element, Volume $=c / s$ area $(A) \times$ length of element l_{e}
$\left[\therefore\right.$ Intergral over volume $=$ Area \times Integral over length $\left.\int_{V} d V=\int_{I_{e}} A . d x\right]$
Also, $\varepsilon=[B]\{u\} \& \sigma=E[B]\{u\}$ Substituting,
$S E=\frac{1}{2} \int_{l_{e}}(E[B]\{u\})^{T}[B]\{u\} A . d x$
As E is a constant term, \& $([B]\{u\})^{T}=\{u\}^{T}[B]^{T}$, Strain energy becomes; $S E=\frac{1}{2}\{u\}^{T} \int_{l_{e}}\left([B]^{T} E[B] A \cdot d x\right)\{u\}=\frac{1}{2}\{u\}^{T}\left[k_{e}\right]\{u\}$ where \boldsymbol{k}_{e} is elemental stiffness matrix given by $\left[k_{e}\right]=\int_{\text {BALARA }}\left([B]^{T} E[B] A . d x\right)$

Derivation of stiffness matrix

$$
\begin{aligned}
& {\left[k_{z}\right]=\int_{l_{e}}\left([\boldsymbol{B}]^{T} \boldsymbol{E}[\boldsymbol{B}] A \cdot d x\right) \text { Substituting } d x=\frac{l_{e}}{2} d \xi} \\
& {\left[k_{e}\right]=[B]^{T} E[B] A \cdot \frac{l_{e}}{2} \int_{-1}^{+1} d \xi=\left.A E l[B]^{T}[B] \xi\right|_{-1} ^{+1}=A E l_{d}[B]^{T}[B]} \\
& \text { Also } \left.[B]^{T}[B]=\frac{1}{l_{e}}\left[\begin{array}{c}
-1 \\
{[1]}
\end{array}\right] \times \frac{1}{l_{e}}\left[\begin{array}{ll}
-1 & 1]
\end{array}\right]=\frac{1}{l_{e}^{2}} \right\rvert\,\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

$\therefore\left[k_{e}\right]=\frac{A E}{l_{e}}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \cdots \cdots($ iii) is the Elemental stiffness matrix.

Derivation of Load Vector

(i) Load vector due to body force :

Work potential due to body force is given by $\int_{V} u^{T} f d V=\int_{l_{e}} u^{T} f \mathrm{~A} d x$
But $u=[N]\{u\}$ and $d x=\frac{l_{e}}{2} d \xi \Rightarrow W P_{\text {Body force }}=\int_{l_{e}}([N]\{u\})^{T} f \mathrm{~A} \frac{l_{e}}{2} d \xi$
Also $([N]\{u\})^{T}=\{u\}^{T}[N]^{T}$
$W P_{\text {Bodyforce }}=\frac{f A l_{e}}{2}\{u\}^{T} \int_{-1}^{+1}[N]^{T} d \xi=\frac{f A l_{e}}{2}\{u\}^{T}\left\{\begin{array}{c}\{1)_{1} \\ 1\end{array}\right\}$

$\therefore W \boldsymbol{P}_{\text {body force }}=\{u\}^{T}\{f\} \ldots(i v)$ where $\{f\}=\frac{A l_{e} f(\boldsymbol{1}\}}{2}\{i\}$ the body force vector

Derivation of Load Vector...

(ii) Load vector due to surface traction force :

Work potential due to surface traction is given by $\int u^{T} T$ $d s$

For1-D bar element, traction is considered per unit

$\Rightarrow W P_{\text {Traction }}=\int_{l_{e}}([N]\{u\})^{T} T \frac{l_{e}}{2} d \xi \quad$ Also $([N]\{u\})^{T}=\{u\}^{T}[N]^{T}$
$W P_{\text {Traction }}=\frac{T l_{e}}{2}\{u\}^{T} \int_{-1}^{+1}[N]^{T} d \xi=\frac{T l_{e}}{2}\{u\}^{T}\left\{\begin{array}{c}\{ \\ 1 \\ 1\end{array}\right\}$
$\therefore W P_{\text {Traction }}=\{\boldsymbol{u}\}^{T}\{\boldsymbol{T}\} \ldots(\boldsymbol{v})$ where $\{\boldsymbol{T}\}=\frac{\boldsymbol{T l} \boldsymbol{l}_{e}\{ }{\boldsymbol{2}}\left\{\begin{array}{l}1 \\ \boldsymbol{1}\end{array}\right\}$ is the surface tractionvector

Potential Energy functional for a continuum

PE functional for an element $=(S E-W P)$

$$
=\frac{1}{2}\{u\}^{T}\left[k_{e}\right]\{u\}-\{u\}^{T}\{f\}-\{u\}^{T}\{T\}-\{u\}^{T} P_{i}
$$

For the whole continuum, PE functional may be written as;

$$
\Pi=\frac{1}{2}\{U\}^{T}[K]\{U\}-U^{T} F \quad \text { where }
$$

U is the global displacement vector K is the global stiffness matrix

F is global force vector (Body force+Traction+Point loads)
$\Rightarrow F=\left[\frac{f A_{e} l_{e}}{2}\left\{\begin{array}{l}1 \\ 1\end{array}\right\}+\frac{T l_{e}}{2}\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\}+P_{i}\right]$

Properties of Stiffness matrix

1. The stiffness matrix is a banded \& symmetric matrix
2. If there are'n' number of nodes with one degree of freedom each, then order of stiffness matrix is $n \times n$.
3. The main diagonal elements of the stiffness matrix are always positive.
4. If rigid body motion is not prevented by sufficient boundary conditions the stiffness matrix becomes singular.
(i.e. its determinant becomes zero)

Problem 1

Consider the bar shown in Fig. An axial load $\mathrm{P}=200 \mathrm{KN}$ is applied as shown.

Using elimination approach for handling boundary conditions, (a)Determine the nodal

Stiffness matrices:

$$
\begin{aligned}
& {[k]^{(1)}=\frac{2400 \times 70 \times 10^{3}}{300}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=10^{6}\left[\begin{array}{cc}
1 & 2^{2} \\
0.56 & -0.56 \\
-0.56 & 0.56
\end{array}\right]_{2}^{1}=\left[\left.\begin{array}{ccc}
1 & 0^{2} & 3 \\
0.56 & -0.56 & 0 \\
-0.56 & 0.56 & 0 \\
0 & 0 & 0
\end{array}\right|_{2}\right.} \\
& {[k]^{(2)}=\frac{600 \times 200 \times 10^{3}}{400}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=10^{6}\left[\begin{array}{cc}
2 & 3 \\
0.3 & -0.3 \\
-0.3 & 0.3
\end{array}\right]_{1}^{2}=\left[\left.\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0.3 & -0.3 \\
0 & -0.3 & 0.3
\end{array} \right\rvert\, \begin{array}{l}
1 \\
2
\end{array}\right.}
\end{aligned}
$$

Global stiffness matrix : $[K]=[k]^{(1)}+[k]^{(2)}$
$[K]=10^{6}\left[\left.\begin{array}{ccc}0.56 & -0.56 & 0 \\ -0.56 & 0.86 & -0.3 \\ 0 & -0.3 & 0.3\end{array}\right|_{2} ^{3} 3_{\text {BALARA } J} V\right.$

Global load vector :
Global load vector $\{F\}=\left\{\begin{array}{c}0 \\ 200 \times 10^{3} \\ 0\end{array}\right\}^{1} \begin{aligned} & 1 \\ & 2\end{aligned}$
Equilibrium Equation : $[K]\{U\}=\{F\}$ Using fixed bc's at nodes $1 \& 3$,
$\Rightarrow 10^{6}\left[\begin{array}{ccc}1 & 2^{2} & 3 \\ 0.56 & -0.56 & 0 \\ -0.56 & 0.86 & -0.3 \\ 0 & -0.3 & 0.3\end{array}\right] 1,\left\{\begin{array}{c}0 \\ 2\end{array}\right\}\left\{\begin{array}{c}0 \\ u_{2} \\ 0\end{array}\right\}=\left\{\begin{array}{c}0 \\ 200 \times 10^{3} \\ 0\end{array}\right\} \quad \therefore 0.86 \times 10^{6} u_{2}=200 \times 10^{3}$
$u_{2}=0.2326 \mathrm{~mm}, u_{1}=u_{3}=0$

Stresses \& strains :

$$
\begin{aligned}
& \varepsilon^{(1)}=\frac{u_{2}-u_{1}}{L_{1}}=\frac{0.2326-0}{300}=7.752 \times 10^{-4} \\
& \sigma^{(1)}=E \varepsilon^{(1)}=70 \times 10^{3} \times 7.752 \times 10^{-4}=54.26 \mathrm{~N} / \mathrm{mm}^{2} \\
& \varepsilon^{(2)}=\frac{u_{3}-u_{2}}{L_{2}}=\frac{0-0.2326}{400}=-5.815 \times 10^{-4} \\
& \sigma^{(2)}=E \varepsilon^{(2)}=200 \times 10^{3} \times\left(-5.815 \times 10^{-4}\right)=-\mathbf{1 1 6 . 3} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

Reactions at Nodes: $\{R\}=[K]\{U\}-F$

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right\}=10^{6}\left[\left.\begin{array}{ccc}
0^{1} & 2 & 3 \\
-0.56 & -0.56 & 0 \\
0.86 & -0.3
\end{array}| |_{1} \right\rvert\, \begin{array}{l}
0 \\
0
\end{array}-0.3\right. \\
0.3 \mid
\end{array}\right\}\left[\begin{array}{c}
0 \\
u_{2} \\
0
\end{array}\right\}-\left\{\begin{array}{c}
0 \\
200 \times 10^{3} \\
0
\end{array}\right\}, ~ \begin{aligned}
& R_{1}=10^{6}(-0.56 \times 0.2326)-0=-130.26 \mathrm{KN} \\
& R_{2}=10^{6}(0.86 \times 0.2326)-200 \times 10^{3}=0 \\
& R_{3}=10^{6}(-0.3 \times 0.2326)-0=-69.78 \mathrm{KN}
\end{aligned}
$$

A bar having uniform cross sectional area of $250 \mathrm{~mm}^{2}$ is subjected to a load $P=60 \mathrm{KN}$ as shown in fig.

Determine the displacement field, stress \& support reactions in the blip. mm^{2} Consider two elements and use eliminination method to handle $P=60 \mathrm{KN} / \mathrm{K}^{x}$ the boundary conditions. Take $\mathrm{E}=$
150 mm 200 Gpa so mm

Stiffness matrix of an element is

$$
[k]^{(e)}=\frac{A_{e} E_{e}}{l_{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Element Stiffness matrices :

$$
\begin{aligned}
& {[k]^{(1)}=\frac{250 \times 200 \times 10^{3}}{150}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\frac{10^{6}}{3}\left[\left.\begin{array}{cc}
1 & 2 \\
1 & -1 \\
-1 & 1
\end{array}| |^{2}=\frac{10^{6}}{3}\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right| \begin{array}{l}
1 \\
0
\end{array} 0000 \right\rvert\, 3\right.} \\
& {[k]^{(2)}=\frac{250 \times 200 \times 10^{3}}{150}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\frac{10^{6}}{3}\left[\begin{array}{cc}
2 & 3 \\
1 & -1 \\
-1 & 1
\end{array}\right]_{2}=\left[\left.\left.\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right|_{2}\right|_{3}\right.}
\end{aligned}
$$

Global stiffness matrix : $[K]=[k]^{(1)}+[k]^{(2)}$
$[K]=\frac{10^{6}}{3}\left[\left.\begin{array}{ccc}1 & 2 & 3 \\ 1 & -1 & 0\end{array} \right\rvert\, 1\right.$
Global displacement vector: $[U]=\left\{\begin{array}{c}\psi_{1} \\ 2 \\ u_{3}\end{array}\right\}=\left\{\begin{array}{c}0 \\ u_{u} \\ u_{2} \\ 0.12\end{array}\right\}$
Global load vector: $[F]=\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right\}\left\{\begin{array}{l}0 \\ =60 \times 3100\end{array}\right]$

Equilibrium Equation: $[K]\{U\}=\{F\}$

Elimination Method of applying boundary conditions :
Using bc's at nodes $1 \& 3$, as node 1 is fixed, the corresponding row \& column may be eliminated. But at node 3, a specified displacement $a_{3}=0.12 \mathrm{~mm}$ is given.
($F_{1}-k_{13} a_{3}$)
Hence the force vector must be modified as; $\left\{\begin{array}{l}\mid F_{2}-k_{23} a_{3} \\ F_{3}-k_{33} a_{3}\end{array}\right\}$
Now, first row \& first column \& third row \& third column may be eliminated.

$$
\therefore \frac{10^{6}}{3}\left(2 u_{2}\right)=60 \times 10_{3}-\left(-\frac{10^{6}}{3} \times 0.12\right) \Rightarrow u_{2}=0.15 \mathrm{~mm} . \text { Also } u_{1}=0, u_{3}=0.12 \mathrm{~mm}
$$

Stresses \& strains :

$$
\begin{aligned}
& \varepsilon^{(1)}=\frac{u_{2}-u_{1}}{L_{1}}=\frac{0.15-0}{150}=1 \times 10^{-3}, \\
& \sigma^{(1)}=E \varepsilon^{(1)}=200 \times 10^{3} \times 1 \times 10^{-3}=200 \mathrm{~N} / \mathrm{mm}^{2} \\
& \varepsilon^{(2)}=\frac{u_{3}-u_{2}}{L_{2}}=\frac{0.12-0.15}{150}=-2 \times 10^{-4}, \\
& \sigma^{(2)}=E \varepsilon^{(2)}=200 \times 10^{3} \times\left(-2 \times 10^{-4}\right)=-40 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Reactions at fixed supports : }\{R\}=[K]\{U\}-F
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=\frac{10^{6}}{3}(-1 \times 0.15)-0=-50 \mathrm{KN}, \\
& R_{3}=\frac{10^{6}}{3}(-1 \times 0.15+\underset{\text { BALARA } V}{1 \times 0.12})-0=-10 \mathrm{KN}
\end{aligned}
$$

Equilibrium Equation: $[K]\{U\}=\{F\}$

Penalty approach of applying boundary conditions :
In this approach, the fixed nodes may be modelled as those having
a very high stiffness C, 10^{6} where $C=\operatorname{Max} K_{i j} \times 10$ Here, $C=\frac{10^{6}}{3} \times 2 \times 10^{4}=\frac{10^{6}}{3}(20000) \quad$ (i.e. $\mathrm{C}=0.667 \times 10^{10}$)
Add this value to stiffness terms at node $1 \& 3$. Also add $C a_{1} \& C a_{3}$
Hence, $k_{11}=k_{33}=\frac{10^{6}}{3}(20000+1)=\frac{10^{6}}{3}(20001)$
$F_{1}=C a_{1}=\left(0.667 \times 10^{10} \times 0\right)=0$
$F_{3}=C a_{3}=\left(0.667 \times 10^{10} \times 0.12\right)=800 \times 10^{6}$

$$
\therefore \frac{10^{6}}{3}\left[\left(20001 u_{1}\right)-u_{2}\right]=0 \Rightarrow \mathbf{2 0 0 0 1} u_{1}-\boldsymbol{u}_{2}=\boldsymbol{0} \cdots(\boldsymbol{i})
$$

$$
\frac{10^{6}}{3}\left[\left(-u_{1}\right)+2 u_{2}-u_{3}\right]=60 \times 10^{3} \Rightarrow-u_{1}+2 u_{2}-u_{3}=0.18 \cdots(i i)
$$

$$
\frac{10^{6}}{3}\left[\left(0-u_{2}+20001 u_{3}\right]=800 \times 10^{6} \Rightarrow-\boldsymbol{u}_{2}+20001 u_{3}=2400 \cdots(i i)\right.
$$

Solving, $u_{1}=7.4998 \times 10^{-6} \mathrm{~mm}, u_{2}=0.15 \mathrm{~mm}, u_{3}=0.1200015 \mathrm{~mm}$,
Reactions at fixed supports : $R=-C\left(q_{i}-a_{i}\right)$

$$
R_{1}=-C\left(q_{1}-a_{1}\right)=-0.6667 \times 10^{10}\left(7.4998 \times 10^{-6}-0\right)=-50 \mathrm{KN}
$$

$$
R_{3}=-C\left(q_{3}-a_{3}\right)=-0.6667 \times 10^{10}(0.1200015-0.12)=-10 \mathrm{KN}
$$

Note: In penalty method, do not round off the displacements to second or third decimal place. Keep all the digits after decimal.

Temperature Effects:

If there is a change in temperature ΔT of a 1 D bar element, the load vector may be modified as; $F=\sum f^{e}+T^{e}+\theta^{\theta}+P$ where; e
$f^{e}=$ Body force, $T^{e}=$ Traction force, $P=$ Point load
θ is the additional load due to thermal effect, given by
$\theta=(E \times A \times \alpha \times \Delta T)$
where $\alpha=$ Coefficient of thermal expansion
$A=$ Area of the element, $E=$ Modulus of elasticity
Strain in the element is $\varepsilon=[B]\{u\}-\alpha \Delta T$
Stress in the element is $\sigma=E \varepsilon=\mathrm{E} \times([B]\{u\}-\alpha \Delta T$
)

Problem 3

| An axial load | $\mathrm{P}=$ | |
| :--- | :--- | :--- | :--- |
| 300 KN | is | applied |
| $20^{\circ} \mathrm{C}$ | to | the rod as |

shown in Fig. The temperature is

Element Stiffness matrices :
Stiffness matrix of an element is $[k]^{(e)}=\frac{A_{e} E_{e}}{l_{e}}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$[k]^{(1)}=\frac{900 \times 70 \times 10^{3}}{200}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=10^{3}\left[\begin{array}{cc}1 & 2 \\ 315 & -315 \\ -315 & 315\end{array}\right]_{2}^{1}=10^{3}\left[\left.\begin{array}{ccc}11 \\ 315 & -3^{2} 15 & 0 \\ -315 & 315 & 0 \\ 0 & 0 & 0\end{array}\right|_{2}\right.$
$[k]^{(2)}=\frac{1200 \times 200 \times 10^{3}}{300}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=10^{3}\left[\begin{array}{cc}2 & 3 \\ 800 & -800 \\ -800 & 800\end{array}\right]_{3}^{2}=10^{3}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 800 & -800 \\ 0 & -800 & 800\end{array}\right]_{3}$

Global Stiffness matrices: $[\mathrm{K}]=[k]^{(1)}+[k]^{(2)}$

$$
\begin{aligned}
& {[\mathrm{K}]=10^{3}\left[\left.\begin{array}{ccc}
315 & -3^{2} 15 & 0^{3} \\
-315 & 315 & 0 \\
0 & 0 & 0
\end{array}\right|_{3} ^{1}{ }_{2+10^{3}}^{\left[\left.\left.\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 800 & -800 \\
0 & -800 & 800
\end{array}\right|_{1}\right|_{2}\right.}\right.} \\
& \Rightarrow[K]=10^{3}\left[\left.\begin{array}{crc}
31^{1} 5 & -3^{2} 15 & 3 \\
-315 & 1115 & -800 \\
& 0 & 800
\end{array}\right|_{2}\right.
\end{aligned}
$$

Element Load Vectors :

Here there is a temperature change of $\Delta T=(60-20)=40^{\circ} C$
Load in element 1 due to ΔT is $\theta^{(1)}=\left(E_{1} \times A_{1} \times \alpha \times \Delta T\right)\left\{\begin{array}{c}-1 \\ 1\end{array}\right\}$
$\Rightarrow \theta^{1)}=\left(70 \times 10^{3} \times 900 \times 23 \times 10^{-6} \times 40\right)^{\{ }\left\{\begin{array}{c}1\} \\ 1\end{array}\right\} 57.96 \times 10^{3}\left\{\begin{array}{c}-1 \\ 1\end{array}\right\}$
Similarly, Load in element 1 due to $\Delta T, \theta^{2}=\left(E_{2} \times A_{2} \times \alpha \times \Delta T\right)\left\{\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right\}$
$\Rightarrow \theta^{2)}=\left(200 \times 10^{3} \times 1200 \times 11.7 \times 10^{-6} \times 40\right)\left\{\begin{array}{c}\left(\begin{array}{c}1 \\ 1\end{array}\right\rangle 112.32 \times 10^{3}\left\{\begin{array}{c}-1 \\ 1\end{array}\right\}\end{array}\right.$
Also, there is point load at node 2 which is equal to $300 \times 10^{3} \mathrm{~N}$.

Global Load Vector :
$\{F\}=10^{3}\left\{\begin{array}{c}-57.96 \\ 57.96-112.32+300 \\ 112.32\end{array}\right\}=10^{3}\left\{\begin{array}{c}-57.96 \\ 245.64 \\ 112.32\end{array}\right\}$
Equilibrium Equation : $[K]\{U\}=\{F\}$
$\Rightarrow 10^{3}\left[\begin{array}{ccc}315 & -315 & 0 \\ -315 & 1115 & -800 \\ 0 & -800 & 800\end{array} \left\lvert\,, \begin{array}{l}1 \\ 2 \\ 2\end{array}\left\{\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right\}=10^{3}\left\{\begin{array}{c}-57.96 \\ 245.64 \\ 112.32\end{array}\right\}\right.\right.$
Using fixed bc's at nodes $1 \& 3, u_{1}=u_{3}=0$ Hence eliminating row \& column numbers $1 \& 3$
$\therefore 10^{3} \times 1115 \times u$
$=10^{3} \times 245.64 \therefore u=0.22 \mathrm{~mm}, u=u$
$=0$
3

Strains \& stresses :
$\varepsilon^{(1)}=\left(\frac{u_{2}-u_{1}}{L_{1}}\right)-\alpha \Delta T=\left(\frac{0.22-0}{200}\right)-\left(23 \times 10^{-6} \times 40\right)=1.8 \times 10^{-4}$
$\sigma^{(1)}=E \varepsilon_{1}^{(1)}=70 \times 10^{3} \times 1.8 \times 10^{-4}=12.6 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon^{(2)}=\left(\frac{u_{3}-u_{2}}{L_{2}}\right)-\alpha \Delta T=\left(\frac{0}{300}\right)-\left(11.7 \times 10^{-6} \times 40\right)=-1.201 \times 10^{-3}$
$\sigma^{(2)}=E \varepsilon^{(2)}=200 \times 10^{3} \times\left(-1.201 \times 10^{-3}\right)=-240.2 \mathrm{~N} / \mathrm{mm}^{2}$
Reactions at fixed supports : $\{R\}=[K]\{U\}-F$
$\left\{\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right\}=10^{3}\left[\begin{array}{ccc}31^{1} 5 & -315 & 0 \\ -315 & 1115 & -800 \\ 0 & -800 & 800\end{array}\right] \begin{aligned} & 1 \\ & 2\end{aligned}\left\{\begin{array}{c}0 \\ 0.22 \\ 0\end{array}\right\}-10^{3}\left\{\begin{array}{l}-57.96 \\ 245.64 \\ 112.32\end{array}\right\}$
$R_{1}=10^{3}[(-315 \times 0.22)-(-57.96)]=-11.34 \mathrm{KN}$
$R_{1}=10^{3}[(1115 \times 0.22)-(245.64)]=-0.34 \mathrm{KN}$
$R_{3}=10^{3}(-800 \times 0.22-112.32)=288.32 \mathrm{KN}$

ANALYSIS OF TRUSSES

- A framework composed of members joined at their ends to form a structure is called a truss.
- Truss is used for supporting moving or stationary load. Bridges, roof supports, derricks, and other such structures are common example of trusses.
- When the members of the truss lie essentially in a single plane, the truss is called a plane truss .

Common assumptions made in analysis of trusses

- It should be a prismatic member of a homogenous \& isotropic material resisting a constant load.
- A load on a truss can only be applied at the joints (nodes).
- Due to the load applied each bar of a truss is either induced with tensile/compressive forces.
- The joints in a truss are assumed to be frictionless pin joints
- Self-weight of the bars are neglected.

Element stiffness matrix of Trusses

The deformation of amelement in both local and global coordinate systems.

Element stiffness matrix of Trusses

The deformation of an element in both local and global coordinate systems.

- Fig shows a typical truss element in local \& global coordinate system.
-Local coordinates vary with the orientation of the element where as the global coordinates remain fixed and does not depend on the orientation of the element.
-Let x \& y be the global coordinates and each node has two dof.
-Let q_{1} and q_{2} be the x \& y displacements at node 1 and q_{3} and q_{4} be the values at node 2 .
-Similarly, $\mathrm{q}_{1}{ }^{\prime \prime}, \mathrm{q}_{2}{ }^{\prime \prime}, \mathrm{q}_{3}{ }^{\prime \prime}$ and $\mathrm{q}_{4}{ }^{\prime \prime}$ be the corresponding local displacements.

Element stiffness matrix of Trusses

From the fig, relationship between q and q is ;
$q_{1}^{\prime}=q_{1} \cos \theta+q_{2} \sin \theta$
$q_{2}^{\prime}=q_{3} \cos \theta+q_{4} \sin \theta$
Let $l=\cos \theta$ and $m=\sin \theta$ be
the direction cosines.Then

$$
\begin{aligned}
& q_{1}^{\prime}=l q_{1}+m q_{2} \\
& q_{2}^{\prime}=l q_{3}+m q_{4}
\end{aligned}
$$

The deformation of an element in both local and global coordinate systems.
In the matrix form ;

$$
\left\{\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime}
\end{array}\right\}=\left[\begin{array}{cccc}
l & m & 0 & 0 \\
00 & & l & m
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right\}=[L]\{q\}
$$

Element stiffness matrix of Trusses

where $[L]=\left[\begin{array}{cccc}l & m & 0 & 0 \\ 0 & 0 & l & m\end{array}\right]$ is the transformation matrix.
To find the direction cosines :
Let the coordinates of the ends of truss element whose length is l_{e} be as shown. From the fig, direction cosines are given by ;

$$
\begin{gathered}
l=\cos \theta=\frac{\left(x_{2}-x_{1}\right)}{l_{e}} \\
m=\sin \left(\theta=-\square_{2} y_{1}\right) \\
l_{e}
\end{gathered}
$$

The length of the element is

$$
l_{e}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The truss element is equivalent to one dimensional bar element in local coordinates. Hence the element stiffness matrix is given
by; $k_{e}^{\prime}=\frac{A_{e} E_{e}}{l_{e}}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ with usual notations.
(The single prime (') denotes local coordinate system)
The elemental strain energy for a truss element in local coordinate
system is given by $U_{e}=\frac{1}{2} q^{\prime T} k^{\prime} q^{\prime}$
Stiffness matrix needs to be in global coordinate sytem.
Using $q^{\prime}=L q, U_{e}=\frac{1}{2}[L q]^{T} k^{\prime}[L q]=\frac{1}{2_{2}} q^{T}\left\lceil\left[L k^{T} L\right\rceil\right] q=\frac{1}{2} q^{T} k q$
where $k=\left\lceil\left\lfloor L^{T} k^{\prime} L\right\rceil\right\rfloor \quad$ is the elemental stiffness matrix
in global coordinate system
where L is the transformation matrix
$\left.\left.L=\left[\begin{array}{cccc}l & m & 0 & 0 \\ 0 & 0 & l & m\end{array}\right] \Rightarrow L^{T}=\left[\begin{array}{cc}l & 0 \\ m & 0 \\ 0 & l \\ 0 & m\end{array}\right] \therefore L^{T} k^{\prime}=\frac{A_{e} E_{e} \mid}{l_{e}} \right\rvert\, \begin{array}{cc}l & 0 \\ m & 0 \\ 0 & l \\ 0 & m\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
Multiplying the two matrices, $\left.L^{T} k^{\prime}=\frac{A_{\varepsilon} E_{e}}{l_{e}} \left\lvert\, \begin{array}{ll}l & -l \\ m & -m \\ -l & l \\ -m & m\end{array}\right.\right]$
$\left.\therefore k=\left\lceil\left[L^{T} k^{\prime} L\right\rceil\right\rfloor=\frac{A_{e} E_{e} \mid}{l_{e}}\left|\begin{array}{cc}l & -l \\ m & -m\end{array}\right| \begin{array}{llll}{[l} & m & 0 & 0 \\ -l & l \\ -m & m\end{array}\right]\left[\begin{array}{lll}8 & & l \\ \hline & & \end{array}\right]$
Stiffness matrix of truss elementk $\left.=\frac{A_{e} E_{e}}{l_{e}} \left\lvert\, \begin{array}{llll}l^{2} & m l & -l^{2} & -m l \\ m l & m^{2} & -m l & -m^{2} \\ -l^{2} & -m l & l^{2} & m l \\ -m l & -m^{2} & m l & m^{2}\end{array}\right.\right]$

Derivation of Element stress matrix of truss element:
The element stress matrix for a truss element is equivalent to that of 1D bar element. $\sigma=E B q^{\prime}$ where $\left.B=\frac{1}{l_{e}^{[-1}} \quad 1\right]$ and $q^{\prime}=\left\{\begin{array}{l}q_{1}^{\prime} \\ q_{2}^{\prime}\end{array}\right\} \quad$ Also $q^{\prime}=L q$
$\therefore \sigma=E B q^{\prime}=E \quad \frac{1}{l_{e}}\left[\begin{array}{ll}-1 & 1\end{array}\right]\left[\begin{array}{lccc}l & m & 0 & 0 \\ 0 & 0 & l & m\end{array}\right]\left\{\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ q_{4}\end{array}\right\}$
$\sigma=\frac{E}{l_{e}}\left[\begin{array}{llll}-l & -m & l & m\end{array}\right]\left\{\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ \left|g_{d_{d}}\right|\end{array}\right\}$

Determine the nodal displacements, stresses \& support reactions in the truss segments subjected to point loads as shown in fig. Take $E=70 \mathrm{GPa}, \mathrm{A}=0.01$ m^{2}.

Element	θ	l	l^{2}	m	m^{2}	lm	Length
1	0^{0}	1	1	0	0	0	$1 m$
2	135^{0}	-0.707	0.5	0.707	0.5	-0.5	$1.414 m$
3	90^{0}	0	0	1	1	0	$1 m$

BALARAJ V

Element stiffness matrices in global coordinates are given by;

$$
\begin{aligned}
& \Gamma_{1} \begin{array}{lll}
\lfloor-m l & -m^{2} & m l
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \|_{0}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
1 & 2 & 5 & 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lceil\left[k^{(3)}\right\rceil \equiv 10^{8} \left\lvert\, \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 & 0 & -7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -7 & 0 & 0 & 0 & 7
\end{array}\right.\right]_{6}^{4}
\end{aligned}
$$

Global stiffness matrix $[K]=k^{(1)}+k^{(2)}+k^{(3)}$
$\left.[K]=10^{8}\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 0 & -7 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 & 0 & -7 \\ -7 & 0 & 9.475 & -2.475 & -2.475 & 2.475 \\ 0 & 0 & -2.475 & 2.475 & 2.475 & -2.475 \\ 0 & 0 & 2.475 & 2.475 & 2.475 & -2.475 \\ 0 & -7 & 2.475 & -2.475 & -2.475 & 9.475\end{array}\right]\right]_{6}^{1}{ }_{2}$

Global load vector is $\{F\}=10^{3}\left\{\begin{array}{c}0 \\ 0 \\ -100 \\ 0 \\ 0 \\ 200\end{array}\right\}$

The equation of equilibrium is $K Q=F$

Impoling the koundqr.475 conditions $q_{1}=q_{2}=q_{4}=q_{5}=0$
(@ roller 2 L 47755 rts, normal displacements are constrained \&)
@ hinged supports, all displacements are constrained
\& using elimination approach, $10^{8}\left[\begin{array}{ll}9.475 & 2.475 \\ 2.475 & 9.475\end{array}\right]\left\{\begin{array}{c}q_{3} \\ q_{6}\end{array}\right\}=10^{3}\left\{\begin{array}{c}-100 \\ 200\end{array}\right\}$
Solving, $q_{3}=-0.17 \times 10^{-5} \mathrm{~m}, q_{6}=0.25 \times 10^{-5} \mathrm{~m}$

Stresses in elemnts : In element 1.
$\sigma^{(l)}=\frac{E}{l_{e}}\left[\begin{array}{llll}-l & -m & l & m\end{array}\right]\left\{\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ q_{4}\end{array}\right\}=\frac{70 \times 10^{9}}{1}\left[\begin{array}{llll}-1 & 0 & 1 & 0\end{array}\right]\left\{\begin{array}{c}0 \\ 0 \\ q_{3} \\ 0\end{array}\right\}$
Solving, $\sigma^{(1)}=70 \times 10^{9} \times\left(-0.17 \times 10^{-5}\right)=0.119 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
In element $2, \sigma^{(2)}=\frac{E}{l_{e}}\left[\begin{array}{llll}-l & -m & l & m\end{array}\right]\left\{\begin{array}{l}q_{3} \\ q_{4} \\ q_{5} \\ q_{6}\end{array}\right\}$
$=\frac{70 \times 10^{9}}{1.414}\left[\begin{array}{llll}0.707 & -0.707 & -0.707 & 0.707\end{array}\right]\left\{\begin{array}{c}q_{3} \\ 0 \\ 0 \\ \left(q_{6}\right)\end{array}\right\}$
Solving, $\sigma^{(2)}=\frac{70 \times 10^{9}}{1.414} \times 0.707 \times 10^{-5}(-0.17+0.25)=0.028 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

Stresses in elemnts : In element 3 .

$$
\sigma^{(3)}=\frac{E}{l_{e}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2} \\
q_{5} \\
q_{6}{ }_{6}
\end{array}\right\}=\frac{70 \times 10^{9}}{1}\left[\begin{array}{llll}
0 & -1 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
q_{6} l
\end{array}\right\}
$$

Solving, $\sigma^{(3)}=70 \times 10^{9} \times\left(0.25 \times 10^{-5}\right)=0.175 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
Reactions at supports : $R=K Q-F$

$$
\begin{aligned}
& \boldsymbol{R}_{1}=-7 \times 10^{8}\left(-0.17 \times 10^{-5}\right)-0=1190 \mathrm{~N} \\
& \boldsymbol{R}_{2}=-7 \times 10^{8}\left(0.25 \times 10^{-5}\right)-0=\mathbf{- 1 7 5 0} \mathrm{N} \\
& \boldsymbol{R}_{3}=10^{8}\left[9.475 \times\left(-0.17 \times 10^{-5}\right)+2.475\left(0.25 \times 10^{-5}\right)\right]-(-100) 10^{3}=\mathbf{9 9 0 0 8} \mathrm{N} \\
& \boldsymbol{R}_{4}=10^{8}\left[-2.475 \times\left(-0.17 \times 10^{-5}\right)-2.475 \times\left(0.25 \times 10^{-5}\right)\right]-0=\mathbf{- 1 9 8 N} \\
& \boldsymbol{R}_{5}=10^{8}\left[2.475 \times\left(-0.17 \times 10^{-5}\right)-2.475\left(0.25 \times 10^{-5}\right)\right]-0=\mathbf{1 0 3 9 . 5 N} \\
& \boldsymbol{R}_{6}=10^{8}\left[2.475 \times\left(-0.17 \times 10^{-5}\right)+9.475 \times\left(0.25 \times 10^{-5}\right)\right]-200 \times 10^{3}=\mathbf{- 1 9 8 0 5 2} \mathbf{N}
\end{aligned}
$$

For a two element truss member shown in fig, determine the nodal displacements and stress in each member. Take E=200 Gpa.

$$
500 \mathrm{~mm} \underbrace{q_{5}}_{i=1}
$$

Element	θ	l	l^{2}	m	m^{2}	lm	Length
1	33.7^{0}	0.832	0.692	0.555	0.308	0.462	901.4 mm
2	180^{0}	-1	1	0	0	0	750 mm

Element stiffness matrices in global coordinates are given by;
$\left[k^{(1)}\right]=\frac{A_{1} E}{l_{1}}\left[\begin{array}{cccc}l^{2} & m l & -l^{2} & -m l \\ m l & m^{2} & -m l & -m^{2} \\ m l^{2} & l^{2} & & m l \\ -m_{m l}^{2} & m l & & m^{2}\end{array}\right]=\left(\frac{1200 \times 200 \times 10^{3}}{901.4}\right)\left[\begin{array}{rrrr}0.692 & 0.462^{2} & -0.692 & -0.462 \\ 0.462 & 0.308 & -0.462 & -0.308 \\ 0.692 & -0.462 & 0.692 & 0.462 \\ -0.462 & -0.308 & 0.462 & 0.308\end{array}\right]^{3}{ }^{1}$
$\left\lceil\left[k^{(1)}\right\rceil \equiv 10^{5} \left\lvert\,\left[\begin{array}{llllll}1.84 & 1.23 & -1.84 & -1.23 & 0 & 0 \\ 1.23 & 0.82 & -1.23 & -0.82 & 0 & 0 \\ -1.84 & -1.23 & 1.84 & 1.23 & 0 & 0 \\ -1.23 & -0.82 & 1.23 & 0.82 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]_{6}^{2}\right.\right.$

$$
\begin{aligned}
& 0 \quad 0
\end{aligned}
$$

Global stiffness matrix $[K]=K^{(1)}+K^{(2)}$
$[\mathrm{K}]=\left.10^{5}\left[\begin{array}{llllll}{ }^{1} & 2^{2} & { }^{3} & { }^{4} 23 & 5 & 0^{6} \\ 1.84 & 1.23 & -1.84 & -1.23 & 0 & 0 \\ 1.23 & 0.82 & -1.23 & -0.82 & 0 & 0 \\ -1.84 & -1.23 & 4.5 & 1.23 & -2.67 & 0 \\ -1.23 & -0.82 & 1.23 & 0.82 & 0 & 0 \\ 0 & 0 & -2.67 & 0 & 2.67 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]_{6}^{1}\right|_{6} ^{4}$

Global load vector is $\{F\}=10^{3}\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0\end{array}\right\}$

The equation of equilibrium is $K Q=F$

Imposing the boundary conditions $q_{1}=q_{2}=q_{5}=q_{6}=0$
(At pin joints,(hinged supports) all displacements are constrained)
\& using elimination approach, $10^{5}\left[\begin{array}{cc}4.5 & 1.23 \\ 1.2 B & 0.82\end{array}\right]\left\{\begin{array}{c}q_{3} \\ q_{4}\end{array}\right\}=10^{3}\left\{\begin{array}{c}0 \\ -50\end{array}\right\}$
Solving, $q_{3}=0.2825 \mathrm{~mm}, q_{4}=-1.033 \mathrm{~mm}$

Stresses in elemnts : In element 1. $\sigma^{(l)}=\frac{E}{l_{1}}\left[\begin{array}{llll}-l & -m & l & m\end{array}\right]\left\{\begin{array}{l}q_{1} \\ q_{2} \\ q_{3} \\ q_{4}\end{array}\right\}$
$\sigma^{(1)}=\frac{200 \times 10^{3}}{901.4}\left[\begin{array}{llll}-0.832 & -0.555 & 0.832 & 0.555\end{array}\right]\left\{\begin{array}{c}0 \\ 0 \\ 0.2825 \\ -1.033\end{array}\right\}$
Solving, $\sigma^{(1)}=221.88 \times\left[(0.832 \times 0.2825+0.555(-1.033)]=-75.06 \mathrm{~N} / \mathrm{mm}^{2}\right.$
In element $2, \sigma^{(2)}=\frac{E}{l_{2}}\left[\begin{array}{llll}-l & -m & l & m\end{array}\right]\left\{\begin{array}{l}q_{3} \\ q_{4} \\ q_{5} \\ q_{6}{ }^{l}\end{array}\right\}=\frac{200 \times 10^{3}}{750}\left[\begin{array}{llll}1 & 0 & -1 & 0\end{array}\right]\left\{\begin{array}{c}0.2825 \\ -1.033 \\ 0 \\ 0\end{array}\right\}$
Solving, $\sigma^{(2)}=266.67 \times\left[(1 \times 0.2825+0]=75.33 \mathrm{~N} / \mathrm{mm}^{2}\right.$

Reactions at supports : $R=K Q-F$
$\Rightarrow\left\{\begin{array}{l}R_{1} \\ R_{2}\end{array}\right\}\left[\begin{array}{llllll}R_{3} \\ R_{4} \\ R_{5} \\ 1.84 & 1.23 & -1.84 & -1.23 & 0 & 0 \\ 1.23 & 0.82 & -1.23 & -0.82 & 0 & 0 \\ -R_{6} \mid j \\ -1.84 & -1.23 & 4.5 & 1.23 & -2.67 & 0 \\ -1.23 & -0.82 & 1.23 & 0.82 & 0 & 0 \\ 0 & 0 & -2.67 & 0 & 2.67 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]=10^{6}\left[\begin{array}{c}0 \\ 0 \\ 0.2825 \\ -1.033 \\ 0 \\ 0\end{array}\right\}-10^{3}\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ -50 \\ 0 \\ 0\end{array}\right\}$
$\left.\begin{array}{l}\left\{\left.\begin{array}{l}R_{1} \\ R_{2}\end{array} \right\rvert\,\right. \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{6}\end{array}\right\}=\left\{\left.\begin{array}{c}75039 \\ 49959 \\ 66\end{array} \right\rvert\,\right.$

Obtain the nodal displacements and reactions at supports in the truss shown in fig. Take E=200 Gpa, A=200 mm².

BALARAJ V

$$
l_{1}=500 \mathrm{~mm}, l_{2}=\sqrt{300^{2}+400^{2}}=500 \mathrm{~mm}
$$

Direction Cosines:

Element	θ	l	l^{2}	m	m^{2}	lm	Length
1	143.13°	-0.8	0.64	0.6	0.36	0.48	500
2	180°	-1	1	0	0	0	500

Element stiffness matrices in global coordinates are given by;

$$
\left[k^{(1)}\right]=\frac{A_{1} E}{l_{1} E}\left[\begin{array}{llll}
l^{2} & m l & -l^{2} & -m l \\
m l & m^{2} & -m l & -m^{2} \\
-l^{2} & -m l & l^{2} & m l \\
-m l & -m^{2} & m l & m^{2}
\end{array}\right]=\frac{200 \times 200 \times 10^{3}}{500}\left[\begin{array}{llll}
0.64 & -0.48 & -0.64 & 0.48 \\
-0.48 & 0.36 & 0.48 & -0.36 \\
-0.64 & 0.48 & 0.64 & -0.48 \\
0.48 & -0.36 & -0.48 & 0.36
\end{array}\right]
$$

$\left[k^{(1)}\right]=10^{4}\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5.12 & -3.84 & -5.12 & -0.48 \\ -3.84 & 2.88 & 3.84 & -2.88 \\ -5.12 & 3.84 & 5.12 & -3.84 \\ 3.84 & -2.88 & -3.84 & 2.88\end{array}\right]_{4}^{1}{ }_{2}$
Similarly $\left[k^{(2)}\right]=10^{4}\left[\begin{array}{rrrr}3 & 4 & 5 & 6 \\ 8 & 0 & -8 & 0 \\ 0 & 0 & 0 & 0 \\ -8 & 0 & 8 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]_{4}^{4}$
Global stiffness matrix \([\mathrm{K}]=10^{4}\left[\begin{array}{llllll}5.12 \& -3^{2} .84 \& -5^{3} .12 \& 3.84 \& 0 \& 0

-3.84 \& 2.88 \& 3.84 \& -2.88 \& 0 \& 0

-5.12 \& 3.84 \& 13.12 \& -3.84 \& -8 \& 0

3.84 \& -2.88 \& -3.84 \& 2.88 \& 0 \& 0

0 \& 0 \& -8 \& 0 \& 8 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right]\)| 6 |
| :--- |
| 4 |
| 4 |
| 4 |
| 4 |

Global load vector $[F]=10^{3}\left\{\begin{array}{llllll}0 & 0 & -12 & 0 & 0 & 0\end{array}\right\}^{T}$
\therefore Equilibrium equation is $[\mathrm{K}]\{q\}=F$ where $\{q\}=\left\{\begin{array}{llllll}q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6}\end{array}\right\}^{T}$
Applying bc's $q_{1}=q_{2}=q_{5}=q_{6}=0$, the equilibrium equation reduces to;
$10^{4}\left[\begin{array}{cc}13.12 & -3.84 \\ -3.84 & 2.88\end{array}\right]\left\{\begin{array}{l}q_{3} \\ q_{4}\end{array}\right\}=0 \Rightarrow \boldsymbol{q}_{3}=-\mathbf{0 . 2} \mathbf{m m}, \boldsymbol{q}_{4}=-\mathbf{0 . 6 8 3} \mathrm{mm}$
Also the reactions are $R=[K]\{q\}-F \Rightarrow \boldsymbol{R}_{1}=15987 \mathrm{~N}, \boldsymbol{R}_{2}=11990 \mathrm{~N}, \boldsymbol{R}_{5}=16000 \mathrm{~N}$

Element Stresses

$$
\begin{aligned}
& \sigma_{1}=\frac{E}{l_{1}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right]\left\{\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right\}=\frac{2 \times 10^{5}}{500}\left[\begin{array}{llll}
0.8 & -0.6 & -0.8 & 0.6
\end{array}\right]\left\{\begin{array}{l}
0 \\
0 \\
-0.2 \\
-0.683
\end{array}\right\}=\mathbf{- 9 9 . 9 9 2} \mathbf{M P a} \\
& \sigma_{2}=\frac{E}{l_{2}}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right]\left\{\begin{array}{l}
q_{3} \\
q_{4} \\
q_{5} \\
q_{6}
\end{array}\right\}=\frac{2 \times 10^{5}}{500}\left[\begin{array}{llll}
0.8 & -0.6 & -0.8 & 0.6
\end{array}\right]\left\{\begin{array}{l}
-0.2 \\
-0.983 \\
0 \\
0
\end{array}\right\}=\mathbf{- 8 0} \mathbf{M P a}
\end{aligned}
$$

