
FINITE ELEMENT METHODS

Subject code:18ME61

Credits : 4

Theory : 3 hours ,Tutorial : 2 hours

CIE Marks: 40 , SEE Marks:60, Total Mark:100

April 2021

One Solution for All Engineering Problems



1. The concept of finite element methods in engineering

design

2. Learning selection of elements and boundary

conditions for analysis

3. Discuss 1D and 2D solutions for simple components

such as bars, trusses and beams

4. Apply finite element solutions to structural, thermal,

dynamic problem to develop the knowledge and

skills needed to effectively evaluate finite element

analyses.

Course Learning Objectives



1. Define the fundamentals of finite element  
methods

2. Develop the knowledge to analyse structures in  
static and dynamic conditions

3. Assess numerical techniques for solving  
engineering problems

4. Formulate finite element model to implement  
industrial projects
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Introduction to Finite Element Method:

 General description of FEM,

 Steps involved in FEM,

 Engineering applications of FEM, Advantages of FEM,

Boundary conditions:

 Homogeneous and non-homogeneous for structural

 Heat transfer and fluid flow problems.

 Potential energy method, 

 Rayleigh Ritz Method,

 Galerkin’s Method,

 Displacement method of finite element formulation. 

 Convergence criteria, Discretisation process.

Module-1:Introduction to FEM



 Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes. 

 Strain- displacement relations, Stress-strain relations, Plain stress and Plain 

strain conditions, temperature effects. 

Interpolation models: 

 Simplex, complex and multiplex elements

 Linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D 

Simplex Elements.

Module-1:Introduction to FEM



Methods of Solution

1.1 General Description of FEM



 Classical Method: They offer a high degree of insight, but the problems

are difficult or impossible to solve for anything but simple geometries and

loadings.

 Numerical methods

 Energy: Minimize an expression for the potential energy of the structure

over the whole domain (Rayleigh Ritz Method)

 Boundary element: Approximates functions satisfying the governing

differential equations not the boundary conditions (Galerkin’s Method)

 Finite difference: Replaces governing differential equations and boundary

conditions with algebraic finite difference equations (Newton Raphson

method)

 Finite element: Approximates the behavior of an irregular, continuous

structure under general loadings and constraints with an assembly of

discrete elements.

1.1 General Description of FEM



 Mathematical Model: A model is a symbolic device built to simulate and

predict aspects of behavior of a system or Abstraction of physical reality

(eg x2 + y2 = a2 for Circle)

 Finite element method (FEM): It is a numerical technique for finding

approximate solutions to boundary value problems for partial differential

equations.

 FEM sub divides a large problem into smaller, simpler, parts, called finite

elements.

 The simple equations that model these finite elements are then assembled

into a larger system of equations that models the entire problem.

 Implicit Modelling: It consists of using existent pieces of abstraction and

fitting them into the particular situation.

 Explicit Modeling: It consists of building the model from scratch

1.1 General Description of FEM



1.1 General Description of FEM



1.1 General Description of FEM

Discretization Node

 Discretization: Modeling a body by dividing it into an equivalent system of

finite elements interconnected at a finite number of points on each element

called nodes.

Continuum or body Discretized system 

Element

 Node: interconnected at points common to two or more elements and / or 

boundary lines and / or surfaces.

 Element body by dividing it into an equivalent system of many smaller

bodies or units



Elements are defined by the following properties

1. Dimensionality: 1D, 2D and 3D

2. Nodal Points : Linear (a+bx), Quadratic (a+bx+cx2) and so on

3. Geometry: Line, Triangle, Quadrilateral, Brick, tetrahedron, etc.

4. Degrees of Freedom: Linear (1D, 2D &3D), rotation(Mx My & Mz)

5. Nodal Forces: Linear (1D, 2D &3D), rotation(Mx My & Mz)

1.1 General Description of FEM



1.1 General Description of FEM
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1.1 General Description of FEM



1.2 Steps involved in FEM

STEP I: DISCRETIZATION OF THE STRUCTURE

 The continuum is separated by imaginary lines of
surfaces into a number of finite elements.

The number, type, size and the arrangements of the elements have to be
decided based on the accuracy of the solution required.

`Discretize and select the element types

(a)element type 1D line element 2D element

3D brick element

total number of element (mesh) 1D, 2D,3D.



1.2 Steps involved in FEM

Step 2: Selection of a proper interpolation function or Displacement 

model and check for boundary condition

Since the displacement solution of a

complex structure under any specified 

load conditions cannot be predicted 

exactly, we assume some suitable solution within element to approximate
the unknown solution.

The assumed solution must be simple from computational point of view.

1D line element: u=ax+b

BC-1 at x = 0 then u = 0 then b = 0 Then u

= ax, 
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Steps involved in FEM

SSTEP 3: Derivation of element stiffness matrices  

and load vectors

From the assumed displacement model, the stiffness matrix [ ke] and the load 
vector [ pe], of element ‘e’ are to be derived by using either equilibrium conditions 
or a suitable variational principle.

Form the element stiffness matrix and equations

(a) Direct equilibrium method

(b) Work or energy method

(c) Method of weight Residuals



1.2 Steps involved in FEM

Step 5: Form the system equation

Assemble the element equations to obtain global system equation

and introduce boundary conditions

Step 6: Solve the system equations (solve constant)

a. Elimination method : Gauss’s method

b. Penalty approach method

Step 7: Interpret the results (Find deformation, Stress, strain, etc.)

a. deformation plot

b. stress contour

[k] = assembled stiffness matrix ,

{q} = Vector of nodal displacements ,

{p} = Vector of nodal forces for the complete structure.



1.2 Steps involved in FEM

K u = F

Property [K] Behavior [u] Action [F]

Elastic Stiffness Displacement Force (load)

Thermal Conductivity Temperature Heat source

Fluid Viscosity Velocity Body Force

Electrostatic Dielectric 
Permeability

Electric Potential Charge



1.3 Engineering Applications of FEM

Structural Problem Non-structural Problem

 Stress Analysis

 Truss & Frame analysis

 Stress concentrated problem

 Buckling problem

 Vibration Analysis

 Impact Problem

 Static / Dynamic

 Linear / Nonlinear

 Heat Transfer

 Fluid Mechanics

 Electric or Magnetic Potential

 Soil Mechanics

 Acoustics

 Biomechanics

Mechanical, Aerospace, Civil, Automotive, Electronics, etc



1.3 Engineering Applications of FEM

Displacement Models

In FEA the first step is to discritise the given continuum into smaller nuimber of

parts called elements. The displacement variation for theses elements are

unknown hence a trail function is assumed for the displacement of an element.

They are two functions

Polynomial: polynomial functions is best suited for the displacement model since

mathematical calculation are simpler. A polynomial function or a displacement

models of nth order will give an exact solution for all practical purposes the function

is truncated to a finite order so as to simplify the calculations involved. Hence the

solution obtained is an approximate one.

w(x)  a  a x  a x2  a x4  ... a xn

0 1 2 3 n

Trigonometric displacement :

  


L
 

L
 c Sin

x 
 c Sin

 3x 
11



1.4 Advantages of FEM

FEM can handle

 Irregular Boundaries (straight, curve, etc)

 General Loads (static, dynamic, impact, ...)

 Different Materials (metal, alloys, polymers, composites, ....)

 Boundary Conditions (simple supported, fixed, partially fixed)

 Variable Element Size (nano to Km)

 Easy Modification (changing is very easy)

 Nonlinear Problems (Geometric or Material)



1.4 Advantage and dis of FEM

Advantage

Can readily handle very complex geometry

of engineering
Dynamics,

Electrostatic

restraints

Can handle a wide variety 
problems (Solid mechanics,  
Heat problems, Fluids, 
problems…)

Can handle complex 
(Indeterminate structures can be solved)

Can handle complex loading
 Nodal load -point loads
 Element load (pressure, thermal,

inertial forces)
 Time or frequency dependent loading

Disadvantage

A general closed-form solution, which
would permit one to examine system
response to changes in various
parameters, is not produced.

The FEM obtains only "approximate“
solutions.

The FEM has "inherent" errors. 

Mistakes by users can be fatal



2.1 Potential Energy

Work Potential:A body is subjected to three varieties of forces a) Body force “f”

(b) Traction “T” and (c) point load

a) Work potential due to Body force =

b) Work potential due to Traction =

c) Work potential due to point load =

Strain energy is the energy stored by a system undergoing deformation. When

the load is removed, strain energy as:

L
T

0 u dv fW 

L
T

0W  u dvT

W ui pi


L

0

Tσ ε dv
1

2
U 



2.1 Potential Energy

Potential Energy: is the sum of the elastic strain energy, stored in the

deformed body and the potential energy associated to the applied forces

= SE – WP (due to body force) – WP(due to traction) – WP due to point load)

Minimum potential Energy 

For conservative structural systems, of all the kinematically admissible

deformations, those corresponding to the equilibrium state extremize (i.e.,

minimize or maximize) the total potential energy. If the extremum is a

minimum, the equilibrium state is stable.

i i

L L
T T

000
   σTε dv   u dv f   u dvT u p

2

L 1

  0

Kinematically Admissible: these are any reasonable displacement that you can

think of that satisfy the displacement boundary conditions of the original

problem

Problems will be solved In class room



1.5 Rayleigh Ritz Method

This is an analytical method of determining approximate solution
for a given problem, it is a type of continuum method. Steps involved
in this method are

Step-1 Formulation of Potential energy Equation (Π)

 = Strain Energy + Work Potential (SE+WP)

Step-2 Assume a Trail function which satisfies boundary condition
y = a+bx

x = 0, y= 0

Step-3 Substitute the trail function into potential energy equation

Step-4 Minimize the PE functional so as to obtain the equilibrium condition

Step-5 Solution of the system of linear algebraic equations. Π (find unknowns)

Step-6 Calculation of displacements and stresses

Problems will be solved In class room



Problem
type

1.

SE

5 Rayleigh

WP

Ritz Me

 = SE + Wp

thod

BC Trail function

l

2  EA
1

0

 u 
2

  dx -Pum
 x 

l 2
1  u 

2 EA
x

 dx pum

0  

At x= 0 u=0 
At x = L u =0 U=a0+a1x + a

l  u 
2 At x= 0 u=0

2  EA
1

0


x

 dx -Pum
 

1  
l

 u 
2

2 EA  dx pum

0  x 
U=a0+a1x + a

l

1
2 EA

0

 u 
2 l

  dx  uFAdx
 x  0

l 2 l
1  u 

2 EA
x

 dx  uFAdx

0   0

At x= 0 u=0 
At x = L u =0 U=a0+a1x + a

l

1
2  EI

0

 d 2 y 
2

dx2 
 dx -P ym

 

l  d 2 y 
2

2 EI
dx2 

 dx  pym1

0  

At x= 0 y=0 
At x =0
dy/dx = 0

U=a0+a1x + a
+ a3x3



1.5 Rayleigh Ritz Method

Problem SE WP  = SE + Wp BC Trail function
type

l  d 2 y 
2

2  EI
dx2 

 dx
1

0  

l

 yFAdx
0

l  d 2 y 
2 l

2  EI
dx2  

 dx  yFAdx
1

0   0

At x= 0 y=0
At x =0 dy/dx
= 0

U=a0+a1x + a2x2

+ a3x3

l  d 2 y 
2

2  EI
dx2 

 dx
1

0  

l  d 2 y 
2

1
2 EI 2 

 dx  pym

0  dx 

At x= 0 y=0

 c Sin
x 

 c Sin
 3x 

1 
L
 1 

L 


   
-P ym

At x =L, y = 0
At x =L/2

dy/dx =0

l  d 2 y 
2

2  EI
dx2  

 dx
1

0  

l

 yFAdx
0

l 2 l

1  d 2 y 

2  EI 2  
 dx  yFAdx

0  dx  0

At x= 0 y=0
 c Sin

x 
 c Sin

 3x 
1   1  

 L   L 

At x =L, y = 0
At x =L/2
dy/dx =0



1.6 Galerkin’s Method

It is a method of determining approximate solution for a given
problem assuming a trail function. Steps involved in this method are

Step-1 Formulate the differential Equation (DE) of equilibrium

Step-2 Assume a Trail function which satisfies boundary condition

Step-3 Substitute the displacement function into differential equation of
equilibrium equation is satisfied, it not the difference due to the
approximate function is denoted as “R” where R is called Residual

Step-4 Determine the constants of the function used by using the Galerkin’s 
formula L L

0 
f1 (x)Rdx  0 0 

f2 (x)Rdx  0

Where f1(x) and f2(x) are the functions of displacement models

Step-5 Knowing the constants of displacement function determine the  
unknown values.

Problems will be solved In class room



1.7 Basic Equation of Elasticity

x

1-Dy Elasticity (Axial Loaded Bar)

x=0 x=L
x

F
A(x) = cross section at x

b(x) = body force distribution (force / unit length)

E(x) = Young’s modulus

u(x) = displacement of the bar at x

1. Strong formulation: Equilibrium equation + boundary conditions

Equilibrium equation

Boundary conditions

d
b(x)  0;

dx
u  0 at

EA
du

 F
dx

2. Strain-displacement relationship:

dx

0  x  L

x  0

at x  L

ε(x) 
du

3. Stress-strain (constitutive) relation :  (x)  E ε(x)

E: Elastic (Young’s) modulus of bar



1.8 Strain displacement relation

3D Elasticity

x
y

z

Surface (S)

Volume (V)

u
v

w

x

V: Volume of body, m3

S: Total surface of the body, m2 

The deformation at point

x =[x,y,z]T is given by the 3

components of its displacement

 
w

u 

u 


v


 
NOTE: u= u(x,y,z), i.e., each displacement component is a

function of position



1.8 Strain displacement relation

Strain-displacement relationship in 3D

zx

z

x

z x

u


w

z y
 

y x

v w

u v
 

z

w

v

y

x

u



 xy

 yz



 y

    u












 

 


   

 

x z

y

z 

x

x

  

z y 

0


0

0 

y

0






0 


 


 0



0

0


0



 

 

w

u 

u   v 



 

 xy 

z 

x

 

 zx 

 yz


 
 
 y 



 


(2)



1.8 Strain displacement relation

x

y

A B

C

A’
B’

C’

v

u
dy

dx

x

v
dx

x
u 

u
dx

v
v 

y
dy

1

2

2

AB

212

x x

v


u

 tanβ  tanβ

y

v

  v 
 dy   v 

y
dy   v   dy

     
A' C 'AC

AC dy

x

u
 

x


dx   u 

u
dx   u


 dx

 

     
dx

A' B'AB

xy 1

y

x

 
π
 angle (C 'A ' B' )  β  β

 

 

In 2D



1.9 Stress-Strain Relationship

Linear elastic material (Hooke’s Law) in 3D

  D 




















 2

0
2

0

2

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

1 2 

0

0

0

0

1 2

1 2


 

 

1  

1 

 1

0 0ED  
(1 )(1 2 )



1.10 Plane stress and Strain conditions

1. 1D elastic bar : only 1 component of the stress (stress) is nonzero. All other

stress (strain) components are zero) Recall the (1) equilibrium, (2) strain-

displacement and (3) stress-strain laws

2. 2D elastic problems: 2 situations

PLANE STRESS:

If a body has smaller dimensions along with the normal (longitudinal) direction (z-

axis) and loading applied in this direction.

Or

Plane stress is defined to be a state of stress in which the normal stress and shear 

stress directed perpendicular to the plane are assumed to be zero e.g. thin plate.

PLANE STRAIN:

If the dimensions along longitudinal direction is very long and loading subjected

perpendicular to longitudinal axis 

Or

Plane strain is defined to be a state of strain in which normal strain and shear 

strain normal to the XY plane are assumed to be zero.



1.10 Plane stress and Strain conditions

x

y

Area element 

dA Nonzero stress components  x , y , xy

 y

x

xy
 xy 

h

D

Assumptions:

1. h<<D

2. Top and bottom surfaces are free from traction

3. Xc=0 and pz=0

PLANE STRESS Examples: 1. Thin plate with a hole and

2. thin cantilever beam



1.10 Plane stress and Strain conditions

Isotropic linear elastic stress-strain law










xy xy 

x
 E

 y 




 

 

2

1 

 0 

1 0

0 0

1

 y  
1 2

Hence, the D matrix for the plane stress case is











2

1 


 0

1 0


0 0

1 2

E 1

D 

  D 

yxz


x


      
1

Nonzero stresses: 

Nonzero strains:

PLANE STRESS

 x , y , xy

 x , y , z , xy

Derivation will be solved In class room



1.10 Plane stress and Strain conditions

Area element 

dA

Nonzero strain components

 y

x

 xy

 xy

Assumptions:

1.Displacement components u,v functions of (x,y) 

only and w=0

2. Top and bottom surfaces are fixed

3. Xc=0

4. px and py do not vary with z

 x , y , xy

x

y

z

PLANE STRAIN: Only the in-plane strain components are nonzero

PLANE STRAIN Examples: 1. Dam, 2 Long cylindrical pressure vessel

subjected to internal/external pressure and constrained at the ends



1.10 Plane stress and Strain conditions

Nonzero stress:

Isotropic linear elastic stress-strain law



















xy 

x


xy 

y

x
 E

 y 
 

 
 

2

1 2 0

0

0   1 

1

0
1 2 1 

Hence, the D matrix for the plane strain case is












 2
0

0

1 2 

1 

1 0

0

E
D 

1 1 2
 

  D 

z x y    

 x , y , z , xy

Nonzero strain components:  x , y , xy

PLANE STRAIN

Derivation will be solved In class room



1.13 Gauss-Elimination Method

A set of n equations and n unknowns

a11x1a12x2 a13x3...a1nxn b1

21 1 22 2 23 3 2n n 2a x a x a x ...a x b

na x  an1 1 n 2 2 n3 3 nn n

.

.

x  a x  ...  a x  b

Equation 1 by and multiply by

(n-1) steps of forward elimination

Step 1: For Equation 2, divide

.


21
(a11x1  a12x2  a13x3  ...  a1n xn  b1)

a11 

a 

2121
12 2

11 11 11

21
21 1 b

a aa

a a a
1n n 1a x a x  ... a x 

Subtract the result from Equation 2.

1

11

2121
12  2

11 11

21
21 1

b
aa

a a

a

a
1n  na x  a x  ... a x 

a11

a21 a21 a21

a11 

  
a22  a12 x2  ... a2n  a1n xn  b2  b1

 a23x3  ... a2nxn  b2a21x1  a22x2

a '

 a11 

or

22 2 2n n 2x  ... a ' x  b '

Repeat this procedure for the remaining

equations to reduce the set of equations

as

a11x1  a12x2  a13x3  ... a1nxn  b1

a '

22 2 23 3 2 n n 2x  a ' x  ... a '  x  b'

32  2 33 3
a '

3n n 3x  a ' x  ... a '  x  b'

nnn nn 2  2 n3 3
a '

x  a '  x  ... a '  x  b'



1.13 Gauss-Elimination Method

Step 2 : Repeat the same procedure for 

the 3rd term of Equation 3.

a11x1  a12x2  a13x3  ... a1n xn  b1

a '

22 2 23 3 2n n 2x  a ' x  ...  a '  x  b '

a" x  ... a" x  b"

33 3 3n  n 3

a" x  ... a" x  b"

n3 3 nn  n n

Step: n-1: At the end of (n-1) Forward

Elimination steps, the system of equations

will look like

2
a '

22  2 23 3 2n nx  a ' x  ... a '  x  b '

333 3  b"a" x  ... a" x

n1 n1
nn n na x  b

.
3n n

.

.

11 1 12 2 13 3 1n n 1a  x  a x  a x  ... a x  b

Matrix Form at End of Forward 

Elimination





  



b

b

x

x    b"a"a"

(n-1 )

2

 b1

3

2 

 x1 

(n1 )

3n33

2n

a11


 0

3

⁝



a' x   ' 



   
 ⁝   

nn  n   n 

⁝
 ⁝

a12 a13 a1n
 0 a' a'

 22 23

 0 0

⁝ ⁝

0 0 0 a

Back Substitution

nn

 n

n a(n1)

b(n1)

x

Start with the last equation

because it has only one unknown



a

b  a x

i1
ii

n

x   ji1 for i  n 1,...,1

i1i1
i ij j

i

Problems will be solved In class room


