

V.V Sangha's RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE |Cantonment, Ballari - 583104 | Department of Civil Engineering

COURSE FILE

ACADEMIC YEAR: 2018-19 (ODD SEM)

NAME OF THE STAFF: SACHIN PATIL

SEMESTER: VII

SECTION: A

NAME OF THE SUBJECT: Design of RCC and Steel Structures

> SUBJECT CODE: 15CV72

Department of Civil Engineering

COURSE FILE 2018-19

- 1. VISION AND MISSION OF INSTITUTE & DEPARTEMNT
- 2. TIME TABLE
- 3. COURSE DESIGN, DELIVERY AND ASSESMENT
- 4. COURSE OUTCOMES & CO-PO/PSO MAPPING
- 5. SESSION REPORT
- 6. INTERNAL ASSESSMENT TEST-I/II/ III
- 7. SCHEME OF EVALUATION OF INTERNAL ASSESSMENT TEST-I / II / III
- 8. IA PERFORMANCE ANALYSIS-I / II / III
- 9. COURSE ASSESSMENT AND EVALUATION
- 10. COURSE EXIT SURVEY
- 11. SELF ASSESSMENT REPORT OF STUDENT
- 12. TUTORIAL CLASSES
- 13. RESULT ANALYSIS
- 14. ATTAINMENT SHEETS (Excel Sheet)

Department of Civil Engineering

VISION OF THE DEPARTMENT

 To produce technically, professionally excellent, knowledgeable, socially responsible and globally Competitive Civil Engineers, committed for the sustainable development of the society.

MISSION OF THE DEPARTMENT

- To provide quality education, globally competitive for a successful career in civil engineering.
- To develop the student to pursue higher education with the state of mind of continuous upgradation
- To provide service to society through consultancy, construction protection and preservation of environment and research in civil engineering field.
- To produce exemplary professional civil engineers with entrepreneurial skill

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- PEO1: Graduate would develop successful career in Civil engineering to attend the various issues with high moral and professional standards.
- PEO2: Graduate would be able to work and meet the needs of sustainable development.
- PEO3: Graduate would develop the ability to pursue higher education with continuous engage in lifelong learning.

V.V Sangha's RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE [Cantonment, Ballari - 583104] Department of Civil Engineering

PROGRAM OUTCOME (PO)

PO Number		Program Outcome Description
PO 1	Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem Analysis	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/ Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, t manage projects and in multidisciplinary environments.
PO 12	Life-long learning	Recognize the need for, and have the preparation and ability to engage in Independent and life-long learning in the broadest context of technological change

Department of Civil Engineering

PROGRAM SPECIFIC OUTCOMES (PSO'S)

- PSO1: Ability to develop the skills required for planning, analyzing, designing, estimating and supervise the civil engineering structures.
- PSO2: Ability to identify the soils of different nature through the geotechnical investigations and providing the suitable foundation to the structures.

COURSE DESIGN, DELIVERY AND ASSESMENT

Academic year	2018-2019								
Verified By: DR.M. S. Sholm	Date of preparation: 03/06/2019								
Lab Course Name:	Lab Course Code:								
Course Name: Design of RCC and Steel Structures	Course Code:	1	5	C	v	7	2		
Staff Name: Sachin Patil	Semester:		VII	EVEN			Sec:	A	

Staff Name	Signature	Date		
Sachur Palil	Sold	03/06/19		
Course Coordinator	Signature	Date		
Shoere XI-5.	Shoene	4/6/ 2019		

Mend of the Department
CIVIL ENGINEERING
CIVIL ENGINEERING
R. Y. M. Engineering College.
R. Y. M. Engineering College.
BELLARY-583 104.

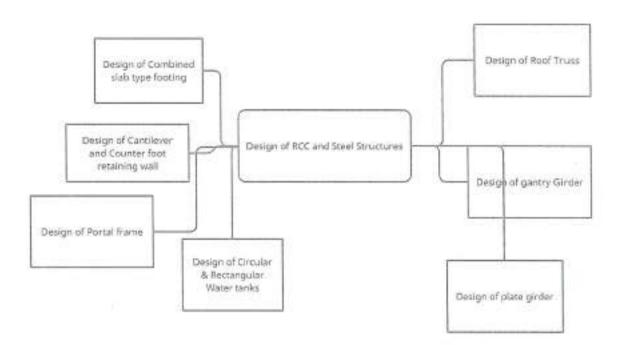
Department of Civil Engineering

COURSRE PLAN

Prerequisites contents: DSS, RCC, SOM, ECE

SL NO	UNIT NAME	NO. OF HOURS REQUIRED
01	Design of RCC Structures	25
02	Design of Steel Structures	25
Cour	se Objectives: During the course, students will learn:	
C402	.1 Acquire the basic knowledge in design of RCC and Stee	l Structures.
C402	.2 Able to solve engineering problems in RC and Steel Str	uctures
	.3 Understand the Concept of RC Structures like Retainin s, Portal Frames and Steel Structures like Roof Truss, Plater.	
C402	.4 Design RC and Steel members as per codal provision.	

Sl no	Text Books:
1	Structural Design & Drawing - N.Krishna Raju, Unversities Press, India.
2	Duggal S K " Limit State Design of Steel Structures" Tata McGraw Hill 2010
3	Gambir M L , "Fundamentals of structural Steel Design" McGraw Hill 2013
Specify a	assessment Tool :
1	IA
2	FE


Signature of Staff

CONCEPT MAP

Med of the Department College!

R. Y. H. Villayeneger Emgis College!

COURSE OUTCOMES & MAPPING

		PO JUSTFICATION (ODD SEM 2018-19)
subject:	Design of R	CC and Steel Structures
Course Cou	de: 15CV72	
aculty:	Sachin Patil	
		Table 1: Course Outcomes
CO		COURSE OUTCOMES
CO402.1	Acquire the basic	knowledge in design of RCC and Steel Structures
CO402.2	Solve engineering	problems in RC and Steel Structures
CO402.3		oncept of of RC Structures like Retaining wall, Footing, Water tanks, Portal Structures like Roof Truss, Plate Girder and Gantry Girder
CO402.4	Design RC and St	eet members as per codal provision
	-	
	7	Table 2: CO Analysis
Co		CO Analysis
	Action: Knowledge : Condition : Criterion:	Acquire RCC & Steel Structures Limit State Method, IS456:2000, IS800:2007 none
	Solve engineering p	problems in RC and Steel Structures
CO402.2	Action:	Solve
	Knowledge:	RCC & Steel Structures
	Condition:	Limit State Method, 1S456:2000, 1S800:2007
	Criterion:	none
		ncept of of RC Structures like Retaining wall, Footing, Water tanks, Portal Frames es like Roof Truss, Plate Girder and Gantry Girder
CO402.3	Action:	Understand
	Knowledge:	RCC & Steel Structures
	Condition:	Limit State Method, IS456:2000, IS800:2007
	Criterion:	none
	Design RC and Sto	sel members as per codal provision
CO402.4	Action:	Design
1.13402.4		RCC & Steel Structures
CO402.4	Knowledge:	ISCC DE DIOCE DE DOMESO
CO492.4	Condition :	Limit State Method, IS456:2000, IS800:2007

Department of Civil Engineering

	Table 3: Session Report	C+1			
SI No	TLO	Sessions (Hours)	co	РО	
1	Design of rectangular slab type combined footing	6	1, 2, 3, 4	1, 2, 3,	
2	Design of cantilever Retaining wall and counter fort retaining wall	6	1, 2, 3, 4	1, 2, 3, 4	
3	Design of circular water tanks resting on ground (Rigid and Flexible base). Design of rectangular water tanks resting on ground	6	1, 2, 3, 4	1, 2, 3,	
4	Design of portal frames with fixed and hinged based supports	6	1, 2, 3, 4	1, 2, 3,	
5	Design of roof truss for different cases of load-ing, forces in members to given	5	1, 2, 3, 4	1, 2, 3,	
6	Design of welded plate girder with intermediate stiffener, bearing stiffener and necessary checks	10	1, 2, 3, 4	1, 2, 3,	
7	Design of gantry girder with all necessary checks	6	1, 2, 3, 4	1, 2, 3,	

Mead of the Department
CIVIL ENGINEERING
R. Y. M. Engineering College,
(Pormerty Vijayanagar Engg. College).
BELLARY-583 104.

				- 11		9.111		ber of		ons	_			_	-
-					_	_	_	d by C	_					-	_
co	POI	PO2	P03	PO4	P05	P06	P07	POB		PO10				Total	
CO402.1	45	43	45	43	0	0	0	0	0	0	0	0		176	
CO402.2	45	43	45	43	0	0	0	0	0	0	0	0		176	
CO402.3	45	43	45	43	0	0	0	0	0	0	0	0	_	176	_
CO402.4	45	43	45	43	0	0	0	0	0	0	9	0	_	176	
-	0	0	0	0	0	0	0	0	9	0	9	0		0	_
_			_	1 a	ble 5;	Perce	nt Att	ainme	nt ot 1	O's		_	6 16		
co	100				Prog	ramm	e Out	comes					Specif	ic Out	come
	20.5	2	3	4	5	6	-70	- 8	15.10	10	THE REAL PROPERTY.	12	SI	S2	83
CO402.1	26%	24%	26%	24%	0%	0%	0%	0%	0%	0%	0%	0%	35%	0%	0%
CO402.2	26%	24%	26%	24%	0%	8%	0%	0%	0%	0%	0%	0%	35%	0%	0%
CO402.3	26%	-	_	24%	0%	8%	0%	0%	0%	0%	0%	0%	35%	0%	0%
CO402.4	26%	24%	26%	24%	0%	0%	0%	0%	.0%	0%	0%	0%	35%	0%	0%
-	-	-		-	-	-	-	-	-		-		0%	0%	0%
				Т	able 6	: Atta	inmer	t Leve	of P	O's	1				
	Programme Outcomes							Specific Outcomes							
CO)					ramm	e Out	comes							
	1	2	3	4	- 5	6	7	- 11	9	10	11	12	SI	52	S3
CO402.1	3	2	3	2	-	-	-	-	-	-	-	-	2		
CO402.2	3	2	3	2	+	-	-	•					2		
CO402.3	3	2	3	2			-0	•	- "	-0			2		
CO402.4	3	2	3	2		-	-		-	Ŀ	-	·	2		
-	-	12	-	-	-	-	-3	-3	-	- **	-				
402	3	2	3	2									2		
*Note: - 1.5	II-bad	-	Made	mate (2)	- Ila	12.00		-1700	100	_	_	_	_		
140107-175	and the same of									evel o	f Atta	inmen			_
		Level		ange t	4 1 41	T	c tot i	ucana	ying a	_	o 15%			_	_
		Level			_	-				100 500 0	to 25°				
		Level				1				26% a	niverson in	-			
	_	444.44		tificat	on M	ethod	adopt	ed to r	_			tainm	ent		
SI No	Т						_	stifica	_						
	Contr	ibution	offer	1402.1	lowered.	e POI	PO2 P	O3 and	PO4 ·	re 45 4	3 45	and 43	house e	ach	_
							TAXABLE TO STATE OF			300000000000000000000000000000000000000	V2. TO 11.1	ence th			of
1												vel per			
										and 3					
0.85		5 20	14.5	-	3 5	-			100		-	N Ba		_	
2	distribution of the contract o	O 100 1 - 100				ther CC	ys of T	able1 v	vith ref	erance t	to numi	ber of h	ours tar	aght as	
	detail	led in T	Table 3	and Ta	ble 4.										

CIVIL ENGG RYMEC

COORD

Course CO-ordinator (M. Mallika HOD
Head of the Department)

R. Y. M. Engineering College, (Pormerly Vijayanagar Engg. College). BELLARY-583 104.

V.V Sangha's RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE [Cantonment, Ballari - 583104] Department of Civil Engineering

CO-PO/PSO INDICATOR MATRIX

со	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
C402.1	IA& FE	IA& FE	IA& FE	IA& FE									IA& FE	
C402.2	IA& FE	IA& FE	IA& FE	IA& FE									IA& FE	
C402.3	IA& FE	IA& FE	IA& FE	IA& FE									IA& FE	
C402.4	IA& FE	IA& FE	IA& FE	IA& FE									IA& FE	

Indicators:

Final Exam: - FE

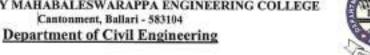
Internal Assessment Test: - IA

If any other Specify:-

Head of the Department)
CIVIL ENGINEERING

R. Y. M. Engineering Coilege, (Pormerly Vijayanagar Engg. Coilege). BELLARY-583 104.

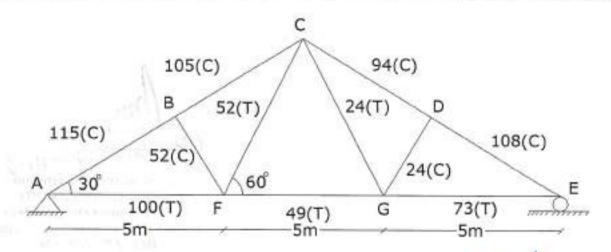
COURSE ASSESSMENT AND EVALUATION SCHEME


		What	To Who m	When/ Where (Frequency in the course)	Max Marks	Evidence Collected	to Course Outcomes	
Direct Assessment Methods	IA	Internal Assessment Tests (2010 Scheme)	Students	Thrice (average:- best two will be computed)	25	Blue Books	1,2,3,4	
Di Asse Me	FE	Final Examination (2010 Scheme)	Stu	End semester exam	100	Result sheet	1,2,3,4	
Indirect seessment Methods		Students Feedback	ents	End of the		Questionnaire	1,2,3,4	
Indirect Assessment Methods		Course Exit Survey	Students	course			1,2,3,4	

Questions for IA and FE will be designed to evaluate the various educational components (Revised Bloom's Taxonomy)

> flead of the Department CIVIL ENGINEERING

R. Y. M. Engineering College, (Formerly Vijayanagar Engg. College). BELLARY-583 104.



INTERNAL ASSESSMENT TEST-I (18-19 Odd Sem)

Staff Name: Sachin Patil	Sem: VII	Sec: A	SET1	
Course Name: Design of RCC and Steel Structures	Course Code: 15CV72	Total Con Hours: 5		
Max marks: 30	Prerequisites: RC			

Q No	QUESTIONS	Marks	BTL	co	PO
Q1	Forces with its nature acting on the roof truss are shown in the figure. Design the following 1.) Outer tension members. 2.) Inner compression members. 3.) Design the supports consisting of shoe angle. (Bearing plate) 4.) Anchor bolts if uplift force is of 15 kN. M20 concrete is used at supports and use 18mm dia bolts of property class 4.6. (All the forces are in kN)	30	L1, L2, L3	C402.1 C402.2 C402.3	1,2,3,

Signature of paper setter

Note: BTL (Blooms taxonomy)

CO (course outcome)

PO (program outcome)

Department of Civil Engineering

INTERNAL ASSESSMENT TEST-II (18-19 Odd Sem)

Staff Name: Sachin Patil	Sem: VII	Sec: A	SET1
Course Name: Design of RCC and Steel Structures	Course Code: Total Con 15CV72 Hours: 50		
Max marks: 30	Prerequisites: RCC, DSS, SOM		

Note: Answer any one full question

Q No	QUESTIONS	Marks	BTL	co	PO
Q1	Design a simply supported gantry girder to carry an electrically operated travelling crane with the following data. Span of crane bridge = 25m Column spacing = 8m Wheel base = 3.5m Crane capacity = 200kN Weight of crane bridge = 150 kN Weight of Crab = 75 kN Minimum hook distance = 1m Weight of rail = 0.3 kN/m Height of rail = 105mm	30	L1, L2, L3	C402.1 C402.3 C402.4	1,2,3, 4
Q2	Design a Cantilever Retaining wall to retain earth embankment 3m high above ground level. The unit Weight of earth is 18kN/m³ and angle of response is 30°. The embankment is horizontal at its top. The safe bearing capacity of soil may be taken as 100kN/m² and the coefficient of friction between soil and concrete is 0.5. Use M20 Concrete and Fe 415 bars.	30	L1, L2, L3	C402.1 C402.3 C402.4	1,2,3

Signature of paper setter

Note: BTL (Blooms taxonomy)

CO (course outcome)

PO (program outcome)

INTERNAL ASSESSMENT TEST-III (18-19 Odd Sem)

Staff Name: Sachin Patil	Sem: VII	Sec: A	SET1
Course Name: Design of RCC and Steel Structures	Course Code: 15CV72	Total Contact Hours: 50	
Max marks: 30	Prerequisites: RCC, DSS, SOM		

Note: Answer any one full question

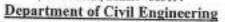
Q No	QUESTIONS	Marks	BTL	co	PO
Q1	The roof of an 8m wide hall is supported on a portal frame spaced at 4m intervals. The height of the portal frame is 4m. The continuous slab is 120 mm thick. Live load on roof = 1.5 kN/m², SBC of soil = 150 kN/m². The columns are connected with a plinth beam and the base of the column may be assumed as fixed. Design the slab, column, beam members and suitable footing for the columns of the portal frame. Adopt M20 grade concrete and Fe 415 steel. Also prepare the detailed structural drawing.	30 Marks	L1, L2, L3	C402.1 C402.2 C402.3 C402.4	1,2,3
Q2	Design a Welded Plate Girder of span 24m carrying a super imposed load of 50kN/m and two concentrated loads of 150kN each at one third points of the span. Assume the girder as laterally Supported throughout with yield strength of 250MPa.Provide two curtailments along with end and intermediate bearing stiffeners.	30 Marks	L1, L2, L3	C402.1 C402.2 C402.3 C402.4	1,2,3

Signature of paper setter

Note: BTL (Blooms taxonomy) CO (course outcome)

PO (program outcome)

Department of Civil Engineering


SCHEME OF EVALUATION INTERNAL ASSESSMENT TEST-I 2018-19 (ODD SEM)

STAFF NAME:- SACHIN PAT	SEM:- VII SEC:- A			
COURSE NAME:- Design of	COURSE CODE:- 15CV72			
DATE:- 14/09/2018	TIME:- 12:15PM - 1:30PM	MAX MARKS:- 30		

Q No	QUESTIONS	Marks	BTL	со	РО
	Forces with its nature acting on the roof truss are shown in the figure.				
	Design 1.) Outer tension members.				
	2.) Inner compression members.	- 4			
	3.) Design the supports consisting of shoe angle. (Bearing plate)				
	4.) Anchor bolts if uplift force is of 15KN.				
	1.) Outer tension members.	2m			
	Determining area angle and connections	2m			
Q1	Checks 1. Yield strength = 217.8 K.	3m 3m	1,2,3	1,2,3	1,2,3,4
	 Rupture strength = 211.8 KN Block shear strength = 310.98 & 254.52 KN 	10M			
	2.) Inner compression members.	4m 6m			
	Determining area angle and connections Checks	10M			
	Design compressive strength = 110.6 KN	5M			1
	3.) Design the supports consisting of shoe angle. (Bearing plate)	5M			
	4.) Anchor bolts if uplift force is of 15KN.				

Blooms Taxonomy (BTL) Course Outcome (CO) Program Outcome (PO)

SCHEME OF EVALUATION INTERNAL ASSESSMENT TEST-II 2018-19 (ODD SEM)

STAFF NAME: SACHIN PA	SEM:- VII SEC:- A		
COURSE NAME:- Design of	COURSE CODE:- 15CV72		
DATE:- 15/10/2018	TIME:- 12:15PM - 1:30PM	MAX MARKS:- 30	

Q No	QUESTIONS	Marks	BTL	СО	PO
Q1	Design a simply supported gantry girder to carry an electrically operated travelling crane with the following data. Span of crane bridge = 25m Column spacing = 8m Wheel base =4.5m Crane capacity = 250kN Weight of crane bridge =150 kN Weight of Crab = 85 kN Minimum hook distance =1.5m Weight of rail = 0.3 kN/m Height of rail = 105mm 1.Load Calculation 2.Trial Section 3.Checks 4.Connection	8m 8m 8m 6m	1,2,3	1,3,4	1,2,3,4
Q2	Design a Cantilever Retaining wall to retain earth embankment 4m high above ground level. The unit Weight of earth is 16kN/m³ and angle of response is 30°. The embankment is horizontal at its top. The safe bearing capacity of soil may be taken as 180kN/m² and the coefficient of friction between soil and concrete is 0.5. Use M20 Concrete and Fe 415 bars. 1.Size of Footing 2.BMD & SFD 3.Checks 4.Rinforcement	8m 8m 8m 6m	1,2,3	1,3,4	1,2,3,4

Blooms Taxonomy (BTL) Course Outcome (CO) Program Outcome (PO)

SCHEME OF EVALUATION INTERNAL ASSESSMENT TEST-III 2018-19 (ODD SEM)

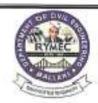
STAFF NAME:- SACHIN PAT	SEM:- VII SEC:- A		
COURSE NAME:- Design of	RCC and Steel Structures	COURSE CO	DE:- 15CV72
DATE:-21/11/2018	TIME:- 12:15PM - 1:30PM	MAX MARKS:- 30	

Q No	QUESTIONS	Marks	BTL	co	РО
Q1	The roof of an 8m wide hall is supported on a portal frame spaced at 4m intervals. The height of the portal frame is 4m. The continuous slab is 120 mm thick. Live load on roof = 1.5 kN/m², SBC of soil = 150 kN/m². The columns are connected with a plinth beam and the base of the column may be assumed as fixed. Design the slab, column, beam members and suitable footing for the columns of the portal frame. Adopt M20 grade concrete and Fe 415 steel. Also prepare the detailed structural drawing. 1. Design of slabs 2. Preliminary design of beams and columns 3. Analysis 4. Design of Columns 5. Design of footings	5m 5m 5m 5m 5m 5m	1,2,3	1,2,3,4	1,2,3,4
Q2	Design a Welded Plate Girder of span 24m carrying a super imposed load of 50kN/m and two concentrated loads of 150kN each at one third points of the span. Assume the girder as laterally Supported throughout with yield strength of 250MPa.Provide two curtailments along with end and intermediate bearing stiffeners. 1. Loads and Moments on Girder 2. Girder Dimensions 3. Checks 4. Connection of Web with Flange Plate 5. Curtailment of Flange Plate 6. Design of Intermediate Stiffeners 7. Design of End Bearing Stiffeners 8. Detailing	4m 4m 4m 4m 4m 4m 4m 4m	1,2,3	1,2,3,4	1,2,3,4

Blooms Taxonomy (BTL) Course Outcome (CO) Program Outcome (PO)

Department of Civil Engineering

IA- Performance Analysis


Staff Name: Sachin Patil	Semester: VII	Sec: A	
Course Name: Design of RCC and Steel Structures	Course Code:15CV72		
Max Marks: 30	Test:I		

Q. No.	CO Mapping	150563	of Studer		-	Set Target		Attainment	
Q. No.	СО	Attempted				Le	evel	percentage	
1	CO 402.1		05			6	0%	100%	
2	CO 402.2		05			6	0%	100%	
3	CO 402.4	05				6	0%	100%	
4	CO 402.3				-				
		To Mi	Q1	Q2	Q3	Q4		Sund a	
	Marks scored	In la	88	-	-	-			
Jehr.	Total Marks		30	-2	-	- 1			
no c	of students scored > 0 marks/Question	50% of	03	-	~	7- 1			
Av	verage no of student	>60	0.6	2		7			
	Average marks score	ed	18		-	-			
		Teall	0 -	10	11	-15	16-20	21-30	
	Marks range		(0	1 8	2	1	2	

Signature of the Staff

IA- Performance Analysis

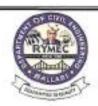
Staff Name: Sachin Patil	Semester: VII Sec: A		
Course Name: Design of RCC and Steel Structures	Course Code:15CV72		
Max Marks: 30	Test : II		

Q. No.	CO Mapping	No. of Students				l'arget	Attainmen	
Q. No.		A	ttempted		1	L	evel	percentage
1	CO 402.1		46			6	0%	100%
2	CO 402.2	46				6	0%	100%
3	CO 402.4	46				6	0%	100%
4	CO 402.3		46			6	100%	
W-H			Q1	Q2	Q3	Q4	10,500	
	Marks scored		1306		*			
	Total Marks		30			-		
no c	of students scored > marks/Question	60% of	46	16	÷	it.		
Av	verage no of student	s >60	1	+		- 12		
	Average marks scor	ed	30		-	- 2		
		0 -	10	11	-15	16-20	21-30	
	Marks range):)		0	0	46

Signature of the Staff

V.V Sangha's RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE |Cantonment, Ballari - 583104 | Department of Civil Engineering

IA- Performance Analysis


Staff Name: Sachin Patil	Semester: VII Sec: A			
Course Name: Design of RCC and Steel Structures	Course Code:15CV72			
Max Marks: 30	Test: III			

Q. No.	CO Mapping	No. of Students Attempted		Set Target Level		Attainment		
1	CO 402.1		43				60%	100%
2	CO 402.2		43				60%	100%
3	CO 402.4	43				60%		100%
4	CO 402.3	43			60%		100%	
		77	Q1	Q2	Q3	Q4		
	Marks scored		70	1134	12			
1, 2	Total Marks		30	30		•		
no c	no of students scored > 60% of marks/Question		03	40	65			
Av	erage no of students	>60	1	0.93	135			
	Average marks score	ed	30	27.9	8	್ಕ		
18-71	Marks range		0-10		11	-15	16-20	21-30
				1		2	0	40

Signature of the Staff

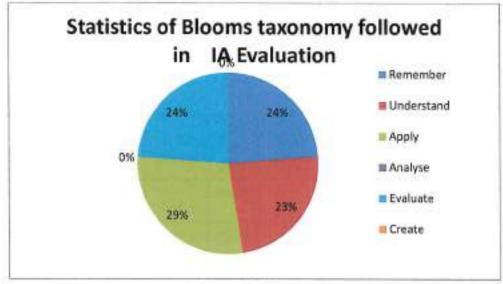
COURSE ASSESSMENT AND EVALUATION: 2018-19

Questions for IA and FE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

IA and FE evaluation

SI. No	Bloom's Category	BTL Level	IA 1 marks	IA1 % BTL	IA 2 marks	IA2 % BTL	IA3 marks	IA3 % BTL	AVGE IA % BTL
1	Remember	L1	5	10.64	46	97.87	46	48.94	52.48
2	Understand	L2	5	10.64	46	97.87	46	48.94	52.48
3	Apply	L3	5	10.64	46	97.87	46	48.94	52.48
4	Analyze	L4	0	0.00	0	0.00	0	0.00	0.00
5	Evaluate	L5	0	0.00	0	0.00	0	0.00	0.00
6	Create	L6	0	0.00	0	0.00	0	0.00	0.00

	Name	Signature with Date
Prepared by	Salin Pal	3/8/19
Reviewed by		


(Ar Mallikajina Hor)

Head of the Department CIVIL ENGINEERING R. Y. M. Engineering College, (Formerly Vijayanagar Engg. College). BELLARY-583 104.

Department of Civil Engineering

Tutorial Classes

- Conduct one tutorial class per week.
- Mark tutorial in attendance register and take signature in given format.
- Maintain topics covered / discussed under tutorial.
- To asses them conduct (Written test, Oral, Questions observe their hand book work out etc).
- Maintain observations of their performance by grading them with Good, Moderate, Average, Poor.
- One section split into 2 and handled by 2 staff members (30 students max for each staff)

and the Contraction College, CORPORAR WISHINGTON DISCOVERSORS MELLATIVIANE TON.

Department of Civil Engineering

Tutorial Conducted

Staff Name: Sachin Patil

Semester: VII

Sec: A

Course Name: DRCS

Course Code: 15CV72 Academic Year:2018-19

Tutorial Objectives:

1. Quiz

https://goo.gl/forms/H681DS2BvzsfFBk72

2. Solving extra problems

Done in class

3. Question paper solutions

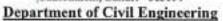
https://drive.google.com/drive/folders/1KCVEXmJ1upmcJd58RVnVG5wyO IQ2ZZYC

4. Notes

https://drive.google.com/drive/folders/1KCVEXmJ1upmcJd58RVnVG5wyO IQ2ZZYC

Tutorial No	Topics Covered	BTL	co	РО
1	Bolted and welded plate girder	2,3,4,6	1	1,2,3,6,8,10
2	Roof Truss	2,3,4,6	1	1,2,3,6,8,10
3	Gantry girder	2,3,4,6	3	1,2,3,6,8,10
4	Slab base & Gusseted base	2,3,4,6	4	1,2,3,6,8,10

Signature of Staff



Tutorial Classes Assessment Grade Sheet

Sl.No	Student Name	USN	Performance Grade				
			1	2	3	4	
1	KRISHNA S LAXANI	3VC14CV047				V	
2	NIHAL ANSAR M	3VC14CV065				/	
3	PRUTHVI RAJ K N	3VC14CV072	+		V		
4	SANNAPPAGOUDA R HOGESOPPIN	3VC14CV088			/		
5	VIDYASAGAR DANI	3VC14CV115	+				
6	K YINAY KUMAR	3VC14CV125			V		
7	AJITH YADAV G H	3VC15CV003			***	-	
8	AMARNATH B V	3VC15CV004					
9	ASIF MOHAMMED M	3VC15CV007			/		
10	BHASKAR K	3VC15CV010					
11	BHASKAR REDDY P	3VC15CV011		1			
12	BHEEMESHA G	3VC15CV012				0	
13	CHANNABASAYYA	3VC15CV013	+	1			
14	DADA KHALANDARA M Y	3VC15CV014		7000			
15	DANNIRALA ANJINAPPA	3VC15CV015			7		
16	DEVISETTY PRIYANKA	3VC15CV017			1		
17	DHANUSHRI S	3VC15CV018		+	+	V	
18	DIVI TEJA K	3VC15CV019		-	/		
19	DIWAKAR REDDY U	3VC15CV020		V		-	

Performance Grade-1) Good 2) Moderate 3) Average 4) Poor

COURSE EXIT SURVEY 2018-19 7th SEM

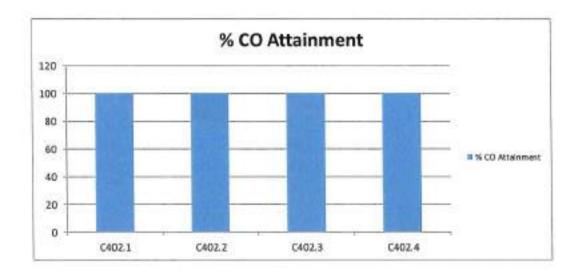
Faculty Name:

Sachin Patil

COURSE NAME:

DRCS

C402.1	Acquire the basic knowledge in design of RCC and Steel Structures
C402.2	Able to solve engineering problems in RC and Steel Structures
C402.3	Understand the Concept of of RC Structures like Retaining wall, Footing, Water tanks, Portal Frames
	Have the ability to follow design procedures as per codal provisions and skills to arrive at


R NO.	USN	Student name	C402.1	C402.2	C402.3	C402.4
A-01	3VC14CV047	KRISHNA S LAXANI	5	5	5	5
A-02	3VC14CV065	NIHAL ANSAR M	5	5	5	
A-03	3VC14CV972	PRUTHVI RAJ K N	5	- 5	5	
A-04	3VC14CV088	SANNAPPAGOUDA R HOGESOPPIN	5			
A-05	3VC14CV115	VIDYASAGAR DANI	5			
A-06	3VC14CV125	K VINAY KUMAR	5	-	5	
A-07	3VC15CV003	AJITH YADAV G H	5			
A-08	3VC15CV004	AMARNATH BV	5			
A-09	3VC15CV007	ASIF MOHAMMED M	. 5			
A-10	3VC15CV010	BHASKAR K	5			-
A-11	3VC15CV011	BHASKAR REDDY P	5			
A-12	3VC15CV012	BHEEMESHA G	5			
A-13	3VC15CV013	CHANNABASAYYA	5	-		
A-14	3VC15CV014	DADA KHALANDARA M Y	5			
A-15	3VC15CV015	DANNIRALA ANJINAPPA	5			
A-16	3VC15CV017	DEVISETTY PRIYANKA	- 5			
A-17	3VC15CV018	DHANUSHRI'S	5			
A-18	3VC15CV019	DIVI TEJA K	- 5			
A-19	3VC15CV020	DIWAKAR REDDY U	- 5			
A-20	3VC15CV021	DODDA BASAVANA GOUDA K	- 5			
A-21	3VC15CV023	G NARASIMHA TEJA	- 5			
A-22	3VC15CV025	GAVISIDDAPPA G	- 5			
A-23	3VC15CV026	GAVISEDDESHWARA G M	- 5	-		
A-24	3VC15CV031	H M AMOGHA VARSHA	1	•		
A-25	3VC15CV032	H M NIRANJAN	-			
A-26	3VC15CV034	H THRIVEN				
A-27	3VC15CV037	HEMALATHA P				
A-28	3VC15CV038	HRISHIKESH PATNAIK		_		
A-29	3VC15CV039] R SANDHYASHREE		+		
A-30	3VC15CV040	J VAGEESHA THEERTHA				
A-31	3VC15CV0+1	JADIKA MOMHAMMED LATEEF				
A-32	3VC15CV043	JAYAPRAKASH				
A-33	3VC15CV044	KMMOUNA				
A-34	3VC15CV045	K SAIKEERTHI VARMARAJU	_	5		
A-35	3VC15CV051	KOYYALAMUDI DEVIKA			_	5
A-36	3VC15CV053	MADHURI REDDY G		5 5		
A-37	3VC15CV054	MAHESH M		5 5	_	5
A-38	3VC15CV056	MALLIKARJUN		5 5		
A-39	3VC15CV057	MANASA PATIL		5 5		5
A-40	3VC15CV123	PRATIKSHA JAIN		5 5		5

A-41	3VC15CV124	K SUCHITRA	s.l	5	5	-
Λ-42	3VC15CV125	SHIVANI M	5	5	5	
A-43	3VC16CV402	AKSHAY TANIKOND NAGENDRA PRASAD	5	5	5	
1-44	3VC16CV411	JADESH G T	5	5	5	5
A-45	3VC16CV413	KARHIK	5	5	5	
A-46	3VC16CV436	SIDDARAMESH	5	5	5	
A-47	37C16CV443	VINOD RUMAR H	5	5	5	į
		AVERAGE	5	5	5	- 5
			1	1	1	- 1
		% CO Attainment	100	100	100	100

Comment of the same of the same of

Head of the Department
CIVIL ENGINEERING
R. Y. M. Engineering College,
(Pormerly Vijayanagar Engg. College),
BELLARY-583 104.

Department of Civil Engineering

RESULT ANALYSIS 2018-19

Result analysis has been done w.r.t IA and FINAL EXAM for the academic year 2018-19.

Statistics of Internal Assessment Tests

	No. of Students	
	0-5	0
	6-10	0
Marks Range	11 - 20	47
Kange	21-30	0
	Total	47

	FE			
	0 - 25	0		
	26 - 35	4		
Marks	36 - 45	1		
Range	46 - 65	16		
7	66 - 90	25		
	Total	46		

The district and the second of the second of

FE STATISTICS

- Marks Range 0 25
 Marks Range 26 35
- Marks Range 36 45 = Marks Range 46 65
- Marks Range 66 90

Head of the Department CIVIL ENGINEERING
R. Y. M. Engineering College,
(Formerly Vijayanagar Engg. College).
BELLARY-583 104.

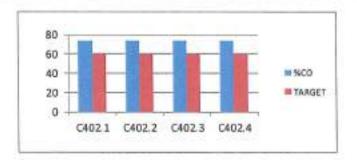
Department of Civil Engineering

DIRECT ATTAINMENT 2018-19

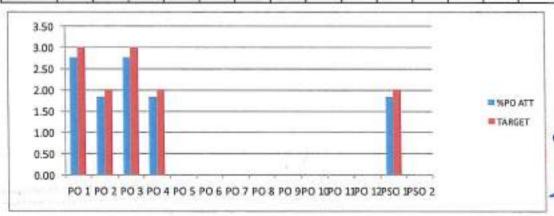
SUBJECT:

DESIGN OF RCC & STEEL STRUCTURES CODE: 15CV72

STAFF:


SACHIN PATIL

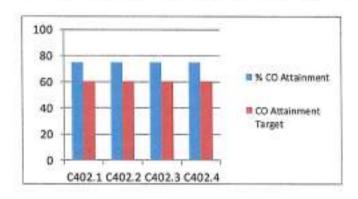
SEMESTER VII


	COURSE OUTCOME STATEMENT
C402.1	Acquire the basic knowledge in design of RCC and Steel Structures
C402.2	Able to solve engineering problems in RC and Steel Structures
C402.3	Understand the Concept of of RC Structures like Retaining wall, Footing, Water tanks,
C402.4	Have the ability to follow design procedures as per codal provisions and skills to arrive at structurally safe RC and Steel members.

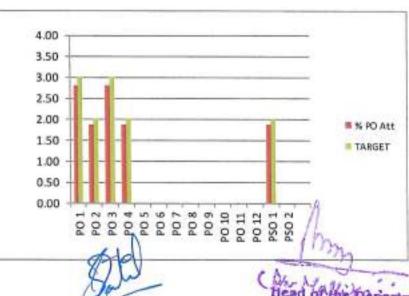
	000	V. 7	X	77.	CC	-PO/P	SO Ma	pping	y		vi - v			, 1
	PO 1	PO 2	PO3	PO 4	PO5	PO 6	PO 7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C402.1	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402.2	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402.3	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402,4	3	2	3	2	0	0	0	0	0	0	0	.0	2	0

	%CO	TARGET
C402.1	73.56	60
C402.2	73.7	60
C402.3	73.56	60
C402.4	73.36	60

1-1	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
%PO ATT	2.76	1.84	2,76	1.84							- 3		1.84	
TARGET	3	2	3	2									2	



Direct & Indirect Attainment 2018-2019


	COURSE OUTCOME STATEMENT
C402.1	Acquire the basic knowledge in design of RCC and Steel Structures
C402.2	Able to solve engineering problems in RC and Steel Structures
C402.3	Understand the Concept of of RC Structures like Retaining wall, Footing, Water tanks, Have the ability to follow design procedures as per codal provisions and skills to arrive at
C402.4	structurally safe RC and Steel members.

	70 10				CO-	PO/PS	SO Ma	pping		- 7	5 23			7
	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C402.1	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402.2	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402.3	3	2	3	2	0	0	0	0	0	0	0	0	2	0
C402.4	3	2	3	2	0	0	0	0	0	0	0	0	2	0

	% CO Attain ment	CO Attai nmen t Targe t
C402.1	74.85	60
C402.2	74.96	60
C402.3	74.85	60
C402.4	74.69	60

PO's	%PO Att	TARG ET
PO 1	2.81	3
PO 2	1.87	2
PO3	2.81	3
PO 4	1.87	2
PO 5		
PO 6		
PO 7		i i
PO8		
PO 9		
PO 10		
PO 11		
PO 12		
PSO 1	1.87	2
PSO 2	1	

CIVIL ENGINEERING R. Y. M. Engineering College,

(Pormerly Vijayanagar Engg. College)

BELLARY-583 104.