



- 1. Vision and Mission statements of the Institute and Department.
- 2. PEOs, PSOs and PO statements.
- 3. VTU, College and Department Calendar.
- 4. Time Table. (Department and Individual time table)
- 5. Syllabus copy
- 6. COs, CO-PO and CO-PSO Mapping and Justification.
- 7. Students List (Students Attendance Register).
- 8. Course Plan
- 9. Course Execution Summary
- 10. Course Assessment and Evaluation scheme.
- 11. Assignment Questions-I, II, III
- 12. Internal Assessment Test –I, II, III (Question Papers)
- 13. Internal Assessment Test I, II, III Scheme of Evaluation.
- 14. Internal Assessment Test I, II, III Performance Analysis.
- 15. Remedial and Tutorial Classes information (If any)
- 16. Final Internal (IA) CIE and External –SEE Marks.
- 17. VTU Question papers.
- 18. Course Exit Survey.
- 19. Course Self Assessment Report.
- 20. Final Result Analysis
- 21. Direct and Indirect Attainment of COs, POs and PSOs.
- 22. CO Attainment Gap Analysis.
- 23. Action taken report (ATR) on Gap Analysis.
- 24. Content beyond syllabus.
- 25. Instructor report (Innovative Practices)
- 26. Any other related documents.





# VISION AND MISSION OF THE INSTITUTE AND DEPARTMENT

### VISION OF THE INSTITUTION

To Produce Professionally Excellent, Knowledgeable, Globally Competitive and Socially Responsible Engineers and Entrepreneurs.

### MISSION OF THE INSTITUTION

- M1 To Provide Quality Education in Engineering and Management.
- M2 To Establish a Continuous Industry-Institute Interaction, Participation and Collaboration to Contribute Skilled Engineers.
- M3 To Develop Human Values, Social Values, Entrepreneurship Skills and Professional Ethics among the Technocrats.
- M4 To Focus on Innovation and Development of Technologies by Engaging in Cutting Edge Research areas.

### VISION OF THE DEPARTMENT

To Produce Professionally Excellent, Knowledgeable, Globally Competitive, Socially Responsible Mechanical Engineers and Entrepreneurs.

### MISSION OF THE DEPARTMENT

M1 To provide quality education in Mechanical Engineering and Management.

- M2 To establish a continuous industry institute interaction, participation and collaboration to contribute skilled Mechanical Engineers.
- M3 To develop human values, socio-ethical values, entrepreneur skills and professional ethics among Mechanical Engineers.
- M4 To focus on Research & Development (R & D) and Innovative Technologies by engaging in cutting edge research areas of Mechanical Engineering.





### PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1** Graduates of Mechanical Engineering shall Develop Strong Academic Foundation for Successful Professional Career
- **PEO2** Graduates of Mechanical Engineering Acquires skills to excel in the area of Mechanical Engineering both in Industries and Academics
- PEO3 Graduates of Mechanical Engineering Possess awareness towards Higher Education, R & D and Socio-Ethical values

### PROGRAM SPECIFIC OUTCOMES (PSO)

| PSO 1 | Graduates are able to Design, Analyze and Develop Mechanical Systems.          |
|-------|--------------------------------------------------------------------------------|
| PSO 2 | Graduates are Capable of Developing Research Skills in Self Sustainable Energy |
|       | sources and Composite Materials.                                               |





# PROGRAM OUTCOMES (PO)

| PO 1               | Engineering        | Apply the knowledge of mathematics, science, engineering fundamentals, and            |  |  |  |  |  |
|--------------------|--------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|                    | Knowledge          | an engineering specialization to the solution of complex engineering problems.        |  |  |  |  |  |
| <b>PO 2</b>        |                    | Identify, formulate, review research literature, and analyze complex engineering      |  |  |  |  |  |
|                    | Problem Analysis   | problems reaching substantiated conclusions using first principles of                 |  |  |  |  |  |
|                    |                    | mathematics, natural sciences, and engineering sciences.                              |  |  |  |  |  |
| PO 3               |                    | Design solutions for complex engineering problems and design system                   |  |  |  |  |  |
|                    | Design/            | components or processes that meet the specified needs with appropriate                |  |  |  |  |  |
|                    | Development of     | consideration for the public health and safety, and the cultural, societal, and       |  |  |  |  |  |
|                    | Solutions          | environmental considerations.                                                         |  |  |  |  |  |
| PO 4               | Conduct            | Use research-based knowledge and research methods including design of                 |  |  |  |  |  |
|                    | investigations of  | experiments, analysis and interpretation of data, and synthesis of the information    |  |  |  |  |  |
|                    | complex problems   | to provide valid conclusions.                                                         |  |  |  |  |  |
| PO 5               | Modern tool        | Create, select, and apply appropriate techniques, resources, and modern               |  |  |  |  |  |
|                    |                    | engineering and IT tools including prediction and modeling to complex                 |  |  |  |  |  |
|                    | usage              | engineering activities with an understanding of the limitations.                      |  |  |  |  |  |
| PO 6               | The orgineer and   | Apply reasoning informed by the contextual knowledge to assess societal, health,      |  |  |  |  |  |
|                    | society            | safety, legal and cultural issues and the consequent responsibilities relevant to the |  |  |  |  |  |
|                    | society            | professional engineering practice.                                                    |  |  |  |  |  |
| <b>PO 7</b>        | Environment and    | Understand the impact of the professional engineering solutions in societal and       |  |  |  |  |  |
|                    | sustainability     | environmental contexts, and demonstrate the knowledge of, and need for                |  |  |  |  |  |
|                    | sustainaointy      | sustainable development.                                                              |  |  |  |  |  |
| PO8<br>Ethics      |                    | Apply ethical principles and commit to professional ethics and responsibilities       |  |  |  |  |  |
|                    | Luies              | and norms of the engineering practice.                                                |  |  |  |  |  |
| PO 9               | Individual and     | Function effectively as an individual, and as a member or leader in diverse           |  |  |  |  |  |
|                    | team work          | teams, and in multidisciplinary settings.                                             |  |  |  |  |  |
| PO 10              |                    | Communicate effectively on complex engineering activities with the engineering        |  |  |  |  |  |
|                    | Communication      | community and with society at large, such as, being able to comprehend and            |  |  |  |  |  |
|                    | Communication      | write effective reports and design documentation, make effective presentations,       |  |  |  |  |  |
|                    |                    | and give and receive clear instructions.                                              |  |  |  |  |  |
| PO 11              | Project            | Demonstrate knowledge and understanding of the engineering and management             |  |  |  |  |  |
|                    | management and     | principles and apply these to one's own work, as a member and leader in a team,       |  |  |  |  |  |
|                    | finance            | to manage projects and in multidisciplinary environments.                             |  |  |  |  |  |
| PO 12              |                    | Recognize the need for, and have the preparation and ability to engage in             |  |  |  |  |  |
|                    | Life-long learning | Independent and life-long learning in the broadest context of technological           |  |  |  |  |  |
| Life-long learning | change.            |                                                                                       |  |  |  |  |  |





08.01.2020 To 22.01.2020

•

06.01.2020

08.09.2019

III Sem M. Arch

**RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI** 

**Department of Mechanical Engineering** 

VTU, DEPARTMENT CALENDAR 2019-20 Odd Sem

٠

01.02.2020

- VII Semester B. E / B. Tech students shall have to undergo Internship for a period of four Weeks. I Semester B. E / B. Tech / B. Arch Students shall compulsorily undergo Induction Program for a period of 3 Weeks (two phases) as per the sebedule given by VTU. First phase 11 days in first semester and second phase 10 days in second semester.
- College Time Table shall be arranged for five and a half week days and planned to accommodate EDUSAT transmission slots, the schedule of which will be notified
- در س ج separately. The faculty/staff shall be available to undertake any work assigned by the university.

-

- If any of the above date is declared to be a holiday then the corresponding event will come into effect on the next working day. Notification regarding Cakadar of Events relating to the conduct of University Examination will be issued by the Registrar (Evaluation) from time to time.







| Sun<br>Augu<br>4<br>11<br>18<br>25<br>Septem<br>1<br>8<br>15<br>22<br>29<br>0ctob<br>5 | EVENTS<br>st 2019<br>29 <sup>th</sup> .07.2019<br>commencement of BE<br>Higher Sem<br>1 <sup>st</sup> HOD Meeting.<br>12 <sup>th</sup> Commencement of<br>P G (III Semester).<br>24 <sup>th</sup> HOD Meeting.<br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-1.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019      | VTU Events<br>Holidays                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Augu<br>4<br>11<br>18<br>25<br>25<br>3<br>5<br>5<br>22<br>29<br>0<br>6<br>5            | st 2019<br>29 <sup>th</sup> .07.2019<br>commencement of BE<br>Higher Sem<br>1 <sup>th</sup> HOD Meeting.<br>12 <sup>th</sup> Commencement of<br>P G (III Semester).<br>24 <sup>th</sup> HOD Meeting.<br>ber 2019<br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019    | 1 <sup>st</sup> Commencement of<br>Semester for both UG<br>(I Semester).<br>15 <sup>th</sup> Independence<br>Day<br>9 <sup>th</sup> Ganesh Chathurth                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 4<br>11<br>18<br>25<br>Septem<br>1<br>8<br>15<br>22<br>29<br>Octob<br>5<br>0           | 29 <sup>th</sup> .07.2019<br>commencement of BE<br>Higher Sem<br>1 <sup>th</sup> HOD Meeting.<br>12 <sup>th</sup> Commencement of<br>P G (III Semester).<br>24 <sup>th</sup> HOD Meeting.<br><b>ber 2019</b><br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br><b>er 2019</b> | 1 <sup>st</sup> Commencement of<br>Semester for both U(<br>(I Semester).<br>15 <sup>th</sup> Independence<br>Day<br>9 <sup>th</sup> Ganesh Chathurth                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 11<br>18<br>25<br>Septem<br>1<br>8<br>15<br>22<br>29<br>Octob<br>5                     | 12 <sup>th</sup> Commencement of<br>P G (III Semester).<br>24 <sup>th</sup> HOD Meeting.<br>ber 2019<br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                | 15 <sup>th</sup> Independence<br>Day<br>9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 18<br>25<br>Septem<br>1<br>8<br>15<br>22<br>29<br>0ctob<br>5                           | 12 <sup>th</sup> Commencement of<br>P G (III Semester).<br>24 <sup>th</sup> HOD Meeting.<br>ber 2019<br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                | 15 <sup>th</sup> Independence<br>Day<br>9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 25<br>Septem<br>3<br>15<br>22<br>29<br>Octob<br>6                                      | 24 <sup>th</sup> HOD Meeting.<br>ther 2019<br>12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                          | 9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Septem 1 8 15 22 29 Octob 6 0                                                          | 12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                        | 9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Septem 1 8 15 22 29 Octob 6                                                            | 12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                        | 9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 1<br>8<br>15<br>22<br>29<br>Octob                                                      | 12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                        | 9 <sup>th</sup> Ganesh Chathur                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 8<br>15<br>22<br>29<br>Octob                                                           | 12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                        | 9 <sup>th</sup> Ganesh Chathur                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 15<br>22<br>29<br>Octob                                                                | 12 <sup>th</sup> , 13 <sup>th</sup> & 14 <sup>th</sup> IA Test-I.<br>19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                        | 9 <sup>th</sup> Ganesh Chathurt                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 22<br>29<br>Octob                                                                      | 19 <sup>th</sup> SMS IA-1 Marks &<br>Attendance to Parents.<br>23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 29<br>Octob<br>6                                                                       | 23 <sup>rd</sup> HOD Meeting.<br>er 2019                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Octob<br>6                                                                             | er 2019                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Octob<br>6                                                                             | er 2019                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 6                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     | October 2019                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     | 2nd Gandhi Jayanth                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| 13                                                                                     | 10 <sup>th</sup> , 11 <sup>th</sup> & 12 <sup>th</sup> IA Test-II.                                                                                                                                                                                                                                                                                                                                  | 13 <sup>th</sup> Vijaya Dashan                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| _20                                                                                    | 17" SMS IA Marks &<br>Attendance to Parents                                                                                                                                                                                                                                                                                                                                                         | 16" Bakrid                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 27                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                        | 28" HOD Meeting.                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Novem                                                                                  | ber 2019                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 3                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                     | 3 <sup>nd</sup> Deepavali                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 10                                                                                     | tib tab a tab ta matter                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 17                                                                                     | 11, 12 & 13 IA Test-III.                                                                                                                                                                                                                                                                                                                                                                            | 15 Moharram                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 24                                                                                     | Attendance to parents.<br>18 <sup>th</sup> HOD Meeting.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                        | 29th Last Working Day of<br>I-Semester UG.                                                                                                                                                                                                                                                                                                                                                          | 30 <sup>th</sup> Last Working<br>Day of UG Higher<br>Semesters.                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| er<br>er<br>a                                                                          | tions (B. 1<br>tions (B. 1<br>tions (E                                                                                                                                                                                                                                                                                                                                                              | 21" SMS Final IA Marks &<br>Attendance to parents.<br>18 <sup>th</sup> HOD Meeting.<br>29 <sup>th</sup> Last Working Day of<br>I-Semester UG.<br>as (B. E., III, V & VII Semesters).<br>as (B. E., I Semesters).<br>attons (B. E., III, V & VII Semesters).<br>tions (B. E., I Semesters).<br>tions (M. Tech, III Semester). |  |  |  |  |  |  |  |  |

Head of the Department, Dept. of Mechanical Engg.

Academic year 2019-20(ODD) Calendar of Events, Dept. of Mechanical Engg, RYMEC, Ballari.





### **TIME TABLE 2019-20**





### **TURBO MACHINES**

Subject Code: 17ME53 Hours/Week : 05 Total Hours : 50 I.A. Marks : 40 Exam Hours: 03 Exam Marks: 60

### Module - I

**Introduction**: Definition of turbo machine, parts of turbo machines, Comparison with positive displacement machines, Classification, Dimensionless parameters and their significance, Effect of Reynolds number, Unit and specific quantities, model studies.

**Thermodynamics of fluid flow**: Application of first and second law of thermodynamics to turbo machines, Efficiencies of turbo machines, Static and Stagnation states, Incompressible fluids and perfect gases, overall isentropic efficiency, stage efficiency (their comparison) and polytropic efficiency for both compression and expansion processes. Reheat factor for expansion process 10 Hours

### Module –II

**Energy exchange in Turbo machines**: Euler's turbine equation, Alternate form of Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor, Problems.

**General Analysis of Turbo machines**: Radial flow compressors and pumps – general analysis, Expression for degree of reaction, velocity triangles,Effect of blade discharge angle on energy transfer and degree of reaction, Effect of blade discharge angle on performance, Theoretical head –capacity relationship, General analysis of axial flow pumps and compressors, degree of reaction, velocity triangles, Problems 10 Hours

### Module –III

**Steam Turbines**: Classification, Single stage impulse turbine, condition for maximum blade efficiency, stage efficiency, Need and methods of

compounding, Multi-stage impulse turbine, expression for maximum utilization factor.

**Reaction turbine** – Parsons's turbine, condition for maximum utilization factor, reaction staging. Problems.10 Hours

### Module –IV

**Hydraulic Turbines**: Classification, various efficiencies.**Pelton turbine** – velocity triangles, design parameters, Maximum efficiency.

**Francis turbine** - velocity triangles, design parameters, runner shapes for different blade speeds. Draft tubes- Types and functions. **Kaplan and** 

**Propeller turbines** - velocity triangles, design parameters. Problems 10 Hours **Module –V** 

**Centrifugal Pumps**: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Minimum speed for starting

the flow, Maximum suction lift, Net positive suction head, Cavitation, Need for priming, Pumps in series and parallel. Problems.

**Centrifugal Compressors**: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and

problems. Axial flow Compressors: Expression for pressure ratio developed in a stage, work done factor, efficiencies and stalling. Problems.10 Hours







### TEXT BOOKS:

| T/R BOOK   | TITLE/AUTHORS/PUBLICATION                                                          |
|------------|------------------------------------------------------------------------------------|
|            | An Introduction to Energy Conversion, Volume III, Turbo machinery, V. Kadambi      |
| <b>T</b> 1 | and Manohar Prasad, New Age International                                          |
|            | Publishers, reprint 2008.                                                          |
| T2         | Turbo Machines ,B.U.Pai , 1st Editions, Wiley India Pvt, Ltd.                      |
|            | Turbines, Compressors & Fans, S. M. Yahya, Tata McGraw Hill Co. Ltd., 2nd edition, |
| T3         | 2002                                                                               |
| R1         | Principals of Turbo machines, D. G. Shepherd, The Macmillan Company (1964).        |
|            | Fluid Mechanics & Thermodynamics of Turbo machines, S. L. Dixon, Elsevier          |
| R2         | (2005).                                                                            |
|            | Text Book of Turbo machines, M. S. Govindegouda and A. M. Nagaraj, M. M.           |
| R3         | Publications, 4Th Ed, 2008                                                         |
|            | T- Text Book. R-Reference Book, AR – Additional Reference                          |

# **QUESTION PAPER FORMAT**:

- 1. One question from each module carrying 16 marks.
- 2. Attempt: Answer Any One Question Compulsorily from Each Module.





| Staff Name: Dr Manjunatha Kondekal               | Sem: V               | Sec: A                    |
|--------------------------------------------------|----------------------|---------------------------|
| Course Name: TURBO MACHINE                       | Course Code: 17ME53  | Total Contact<br>Hours:50 |
| Course outcome author: Dr Manjunatha<br>Kondekal | Checked by: S K Modi |                           |

| CO Index                                                     | Course Outcome                                                                      |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| At the end of the course completion student will be able to: |                                                                                     |  |  |  |
|                                                              |                                                                                     |  |  |  |
| 17C303.1                                                     | Understand the basic quantities related to power absorbing and generating machines. |  |  |  |
| 17C303.2                                                     | Comprehend thermodynamic relations applied to turbo machines.                       |  |  |  |
| 17C303.3                                                     | Analyse the performance of steam turbines.                                          |  |  |  |
| 17C303.4                                                     | Evaluate the work interactions and characteristics of hydraulic turbines.           |  |  |  |
| 17C303.5                                                     | Intrepret the working of pumps and compressors.                                     |  |  |  |

# **CO-PO mapping Matrix**

| PO's               | PO1             | PO2 | PO3 | PO4    | PO5     | PO6  | PO7 | PO8 | POO     | PO10     | <b>D</b> O11 | PO12 |
|--------------------|-----------------|-----|-----|--------|---------|------|-----|-----|---------|----------|--------------|------|
| CO's               | roi             | r02 | 105 | 104    | 103     | 100  | 107 | 100 | 109     | 1010     | FOIT         | F012 |
| 17C303.1           | 3               | 3   |     | 2      |         |      |     |     |         |          |              | 1    |
| 17C303.2           | 3               | 3   |     | 2      |         |      |     |     |         |          |              | 1    |
| 17C303.3           | 3               | 3   | 3   | 2      |         |      |     |     |         |          |              | 1    |
| 17C303.4           | 3               | 3   | 3   | 2      |         |      |     |     |         |          |              | 1    |
| 17C303.5           | 3<br>• <b>5</b> | 3   | 3   | 2      | 1       | n    | ,   |     |         | la       |              | 1    |
| Signature of Staff |                 |     | Str | eam Co | oordina | ntor |     | Со  | urse Co | ordinato | r            |      |



### RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering Justification for the CO with the PO (1-12)



**PO1:** CO 1 to CO 5 has been given higher weightage for this PO as knowledge on fundamentals of science and mathematics are very much required to understand this course.

**PO2:** As problem analysis is carried out for all the Cos mentioned, hence higher weightage is given for the COs 1 to 5.

**PO3:** Design/development of solutions are moderate w.r.t CO3 to CO5, hence higher weightage is assigned, but for the other COs this PO is not applicable.

**PO4:** As we come across complex problems moderately w.r.t all the COs, hence moderate weightage is given.

PO5 to PO11 are not mapped to any of the Cos as they are not applicable for this course.

**PO12:** All Cos are mapped with less weightage as they may be required for future with less preference.

### **CO-PSO Mapping Matrix**

| PSO's<br>CO's | PSO1 | PSO2 |
|---------------|------|------|
| 17C303.1      |      |      |
| 17C303.2      |      |      |
| 17C303.3      |      | 2    |
| 17C303.4      |      | 2    |
| 17C303.5      |      | 2    |

\*Note: - 1.Slight (Low)

2.Modarate (Medium)

3.Substanial (High).





### Justification for the CO with the PSO (1-2)

**PSO1:** None of the Cos will justify PSO1, hence no weightage is given.

**PSO2:** As CO1 & CO2 are not related no weghtage is given and not mapped, remaining Cos are mapped moderately as they are related to working of the machines

Signature of Staff

Stream Coordinator

**Course Coordinator** 

Need of the Department, Mechanical Engineering Department, R.Y.M. Engineering Collage, Contonment, BELLARY-533 104





| Sl.No | USN        | NAME                               |
|-------|------------|------------------------------------|
| A-1   | 3VC16ME007 | ABHISHEK SINHA                     |
| A-2   | 3VC17ME001 | AJAY REDDY N                       |
| A-3   | 3VC17ME002 | AKASHA GOUDA H                     |
| A-4   | 3VC17ME003 | ANIL KITTUR                        |
| A-5   | 3VC17ME004 | BHARATHISHA A B                    |
| A-6   | 3VC17ME005 | BHARGHAV R                         |
| A-7   | 3VC17ME006 | C ESHWAR                           |
| A-8   | 3VC17ME007 | DEEPAK PATIL S R                   |
| A-9   | 3VC17ME008 | DODDA BASAVA B                     |
| A-10  | 3VC17ME009 | DURJAYA K B                        |
| A-11  | 3VC17ME010 | EARESH VARMA C                     |
| A-12  | 3VC17ME012 | ERANAGOUDA K M                     |
| A-13  | 3VC17ME014 | G RANJITH                          |
| A-14  | 3VC17ME016 | G S SREE HARSHA                    |
| A-15  | 3VC17ME018 | GANESH GOWDA M                     |
| A-16  | 3VC17ME019 | GANESH J                           |
| A-17  | 3VC17ME020 | GURUSIDDANA GOUDA B                |
| A-18  | 3VC17ME021 | HAMPANNA                           |
| A-19  | 3VC17ME022 | HANUMESH                           |
| A-20  | 3VC17ME023 | JAFERSADIQ M ABDUL<br>KHADER BASHA |
| A-21  | 3VC17ME024 | JAGADEESH                          |
| A-22  | 3VC17ME025 | JEFFREY SUJAN KUMAR K              |
| A-23  | 3VC17ME027 | KADUBURU MATH<br>PARIKSHITH        |
| A-24  | 3VC17ME028 | KAISARAHMED D                      |
| A-25  | 3VC17ME029 | KARTHIK KUMAR D                    |
| A-26  | 3VC17ME030 | KARTHIK R B                        |





| cpui u | ment of Piece | numeur Bingineering |
|--------|---------------|---------------------|
| A-27   | 3VC17ME031    | KIRAN MATH          |
| A-28   | 3VC17ME032    | LOKESHA NAIK        |
| A-29   | 3VC17ME033    | M CHAITANYA         |
| A-30   | 3VC17ME041    | MOHAMMED AZAM J     |
| A-31   | 3VC17ME043    | MOHAN E             |
| A-32   | 3VC17ME046    | NAVEEN SURAGOUNI    |
| A-33   | 3VC17ME049    | PAVAN KUMAR B       |
| A-34   | 3VC17ME054    | PAVITHRA R          |
| A-35   | 3VC17ME081    | VINAY KUMAR S       |
| A-36   | 3VC18ME401    | ANAND K R           |
| A-37   | 3VC18ME402    | ANIL KUMAR V        |
| A-38   | 3VC18ME411    | H M UDAY KUMAR      |
| A-39   | 3VC18ME413    | IMRAN ABDUL WAHEED  |
|        |               | DELOUWI             |
| A-40   | 3VC18ME415    | K VINAY KUMAR       |
| A-41   | 3VC18ME418    | KIRAN KUMAR D       |
| A-42   | 3VC18ME420    | KUMAR K             |
| A-43   | 3VC18ME423    | MADHUSUDHAN B       |
| A-44   | 3VC18ME424    | MAHANTESH H M       |
| A-45   | 3VC18ME425    | MANIKANTA K         |
| A-46   | 3VC18ME431    | MULLA ALTAF HUSSAIN |
| A-47   | 3VC18ME433    | NISAR AHAMED K M    |
| A-48   | 3VC18ME434    | G PAVAN KALYAN      |
| A-49   | 3VC18ME435    | PAVITHRA K          |
| A-50   | 3VC18ME441    | SAGAR MP            |
| A-51   | 3VC18ME443    | SAMPATH KUMAR Y M   |
| A-52   | 3VC18ME444    | SANTOSH G           |
| A-53   | 3VC18ME446    | K SHIVA KUMAR       |
| A-54   | 3VC18ME449    | SHIVA SHANKAR ADUR  |
| A-55   | 3VC18ME454    | THIPPESWAMY B       |
|        |               | 1                   |





| •par • |            |                    |
|--------|------------|--------------------|
| A-56   | 3VC18ME455 | THIPPESWAMY R      |
| A-57   | 3VC18ME457 | V SIDDHI VINAYAKA  |
| A-58   | 3VC18ME459 | VINOD KUMAR B      |
| A-59   | 3VC18ME460 | VISHWANATH H       |
| A-60   | 3VC18ME461 | VISHWANATH GOWDA K |
| A-61   | 3VC18ME462 | VYSHNAVI           |
| A-62   | 3VC18ME464 | YESHWANTH D        |
| A-63   | 3VC17ME425 | S MUSHTAQ AHMED    |



### RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering COURSE PLAN 2019-20 (Odd Sem)



| Staff Name:<br>Dr Manjunatha Kondekal | Course Type: Core          | Sem / Sec: V/A   |
|---------------------------------------|----------------------------|------------------|
| Course Name: Turbo                    | Course Code: 17ME53        | Total Number of  |
| Machine                               |                            | Lecture Hours:50 |
| Max marks: 40                         | Prerequisites: BTD and ATD |                  |

| Sl.No | Module Name                                       | Lecture Hours<br>Required |
|-------|---------------------------------------------------|---------------------------|
| 01    | Introduction, Thermodynamics of fluid flow        | 10 Hours                  |
| 02    | Energy exchange in Turbo machines, General        | 10 Hours                  |
|       | Analysis of Turbo machines                        |                           |
| 03    | Steam Turbines, Reaction turbine                  | 10 Hours                  |
| 04    | Hydraulic Turbines, Francis turbine, Propeller    | 10 Hours                  |
|       | turbines                                          |                           |
| 05    | <b>Centrifugal Pumps, Centrifugal Compressors</b> | 10 Hours                  |

| Sl.No | Topic to be Covered                                                                    |
|-------|----------------------------------------------------------------------------------------|
| 1.    | Module - I                                                                             |
|       | Introduction: Definition of turbo machine, parts of turbo machines                     |
| 2.    | Comparison with positive displacement machines, Classification,                        |
| 3.    | Dimensionless parameters and their significance                                        |
| 4.    | Effect of Reynolds number                                                              |
| 5.    | Unit and specific quantities, model studies.                                           |
| 6.    | Thermodynamics of fluid flow: Application of first and second law of thermodynamics    |
|       | to turbo machines, Efficiencies of turbo machines                                      |
| 7.    | Static and Stagnation states                                                           |
| 8.    | Incompressible fluids and perfect gases, overall isentropic efficiency                 |
| 9.    | stage efficiency (their comparison) and polytropic efficiency for both compression and |
|       | expansion processes.                                                                   |
| 10.   | Reheat factor for expansion process                                                    |
| 11.   | Module –II                                                                             |
|       | Energy exchange in Turbo machines: Euler's turbine equation, Alternate form of         |
|       | Euler's turbine equation,                                                              |
| 12.   | Velocity triangles for different values of degree of reaction                          |
| 13.   | Components of energy transfer                                                          |
| 14.   | Degree of Reaction, utilization factor                                                 |
| 15.   | Relation between degree of reaction and Utilization factor, Problems                   |
| 16.   | General Analysis of Turbo machines: Radial flow compressors and pumps – general        |
|       | analysis, Expression for degree of reaction,                                           |
| 17.   | velocity triangles, Effect of blade discharge angle on energy transfer and degree of   |
|       | reaction                                                                               |
| 18.   | Effect of blade discharge angle on performance                                         |
| 19.   | Theoretical head -capacity relationship, General analysis of axial flow pumps and      |
|       | compressors                                                                            |
|       |                                                                                        |





|         |     | Department of Mechanical Engineering                                                      |
|---------|-----|-------------------------------------------------------------------------------------------|
| IN HARD | 20. | degree of reaction, velocity triangles, Problems                                          |
|         | 21. | Module –III                                                                               |
|         |     | Steam Turbines: Classification                                                            |
|         | 22. | Single stage impulse turbine                                                              |
|         | 23. | condition for maximum blade efficiency                                                    |
|         | 24. | stage efficiency                                                                          |
|         | 25. | Need and methods of compounding,.                                                         |
|         | 26. | Multi-stage impulse turbine, expression for maximum utilization factor                    |
|         | 27. | Reaction turbine – Parsons's turbine                                                      |
|         | 28. | condition for maximum utilization factor                                                  |
|         | 29. | reaction staging                                                                          |
|         | 30. | Problems.                                                                                 |
|         | 31. | Module –IV                                                                                |
|         |     | Hydraulic Turbines: Classification, various efficiencies.                                 |
|         | 32. | Pelton turbine – velocity triangles, design parameters,                                   |
|         | 33. | Maximum efficiency.                                                                       |
|         | 34. | Francis turbine - velocity triangles                                                      |
|         | 35. | design parameters                                                                         |
|         | 36. | runner shapes for different blade speeds                                                  |
|         | 37. | Draft tubes- Types and functions.                                                         |
|         | 38. | Kaplan and                                                                                |
|         |     | Propeller turbines - velocity triangles                                                   |
|         | 39. | design parameters                                                                         |
|         | 40. | Problems                                                                                  |
|         | 41. | Module –V                                                                                 |
|         |     | Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and      |
|         |     | efficiencies of centrifugal pump,                                                         |
|         | 42. | Minimum speed for starting                                                                |
|         |     | the flow, Maximum suction lift,                                                           |
|         | 43. | Net positive suction head, Cavitation, Need for priming                                   |
|         | 44. | Pumps in series and parallel                                                              |
|         | 45. | Problems                                                                                  |
|         | 46. | Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage |
|         |     | work, Pressure developed,                                                                 |
|         | 47. | stage efficiency and surging and                                                          |
|         |     | problems. Axial flow Compressors:,.                                                       |
|         | 48. | Expression for pressure ratio developed in a stage, work done factor                      |
|         | 49. | efficiencies and stalling                                                                 |
|         | 50. | Problems.                                                                                 |

### Teaching and Learning Tools: Blackboard/PowerPoint presentation/webinar/lab

### **Text Books:**

- T1 Thermodynamics an engineering approach, by Yunus A. Cenegal and Michael A. Boles.
   Tata McGraw hill Pub. Sixth edition,2008.
   T2 Basic and Turbo Machines" by P.K. Nag, Tata McGraw Hill, 2nd Edi. 2009
- T3 Fundamentals of Thermodynamics by G.J. Van Wylen and R.E. Sonntag, Wiley Eastern.





Fourth edition 19993.

### **Reference Books:**

- R1 Thermodynamics for engineers, Kenneth A. Kroos and Merle C. Potter, Cengage Learning, 2016
   R2 Principles of Engineering Thermodynamics, Michael J,Moran, Howard N. Shapiro, Wiley,
- 8th Edition
- R3 An Introduction to Thermo Dynamics by Y.V.C.Rao, Wiley Eastern Ltd, 2003.
- R4 Thermodynamics by Radhakrishnan. PHI, 2nd revised edition.
- R5 I.C Engines by Ganeshan.V. Tata McGraw Hill, 4rth Edi. 2012.
- R6 I.C.Engines by M.L.Mathur & Sharma. Dhanpat Rai& sons- India

Note: Planning of syllabus is done as per VTU curriculum

Staff Signature

HOD

Need of the Department, Mechanical Engineering Department, R.Y.M. Engineering Collage, Contonment, BELLARY-533 184





# **COURSE EXECUTION SUMMARY 2019-20**

| Staff Name:<br>Dr Manjunatha Kondekal | Course Type: Core   | Sem / Sec: V/A                      |
|---------------------------------------|---------------------|-------------------------------------|
| Course Name: Turbo<br>Machines        | Course Code: 17ME53 | Total Number of<br>Lecture Hours:50 |

| Sl.No | Date             | Topic to be Covered                                                        |  |  |
|-------|------------------|----------------------------------------------------------------------------|--|--|
| 1.    |                  | Module - I                                                                 |  |  |
|       |                  | Introduction: Definition of turbo machine, parts of turbo machines         |  |  |
| 2.    |                  | Comparison with positive displacement machines, Classification,            |  |  |
| 3.    |                  | Dimensionless parameters and their significance                            |  |  |
| 4.    |                  | Effect of Reynolds number                                                  |  |  |
| 5.    |                  | Unit and specific quantities, model studies.                               |  |  |
| 6.    | 05/08/2019<br>To | Thermodynamics of fluid flow: Application of first and second law of       |  |  |
|       | 17/08/2019       | thermodynamics to turbo machines, Efficiencies of turbo machines           |  |  |
| 7.    |                  | Static and Stagnation states                                               |  |  |
| 8.    |                  | Incompressible fluids and perfect gases, overall isentropic efficiency     |  |  |
| 9.    |                  | stage efficiency (their comparison) and polytropic efficiency for both     |  |  |
|       |                  | compression and expansion processes.                                       |  |  |
| 10.   |                  | Reheat factor for expansion process                                        |  |  |
| 11.   |                  | Module –II                                                                 |  |  |
|       |                  | Energy exchange in Turbo machines: Euler's turbine equation, Alternate     |  |  |
|       |                  | form of Euler's turbine equation,                                          |  |  |
| 12.   |                  | Velocity triangles for different values of degree of reaction              |  |  |
| 13.   |                  | Components of energy transfer                                              |  |  |
| 14.   | 10/00/0010       | Degree of Reaction, utilization factor                                     |  |  |
| 15.   | 19/08/2019<br>To | Relation between degree of reaction and Utilization factor, Problems       |  |  |
| 16.   | 31/08/2019       | General Analysis of Turbo machines: Radial flow compressors and pumps      |  |  |
|       |                  | – general analysis, Expression for degree of reaction,                     |  |  |
| 17.   |                  | velocity triangles, Effect of blade discharge angle on energy transfer and |  |  |
|       |                  | degree of reaction                                                         |  |  |
| 18.   |                  | Effect of blade discharge angle on performance                             |  |  |
| 19.   |                  | Theoretical head -capacity relationship, General analysis of axial flow    |  |  |
|       |                  | pumps and compressors                                                      |  |  |
| 20.   |                  | degree of reaction, velocity triangles, Problems                           |  |  |
| 21.   |                  | Module –III                                                                |  |  |
|       |                  | Steam Turbines: Classification                                             |  |  |
| 22.   |                  | Single stage impulse turbine                                               |  |  |
| 23.   |                  | condition for maximum blade efficiency                                     |  |  |
| 24.   | 02/09/2019       | stage efficiency                                                           |  |  |
| 25.   | To               | Need and methods of compounding,.                                          |  |  |
| 26.   | 14/09/2019       | Multi-stage impulse turbine, expression for maximum utilization factor     |  |  |
| 27.   |                  | Reaction turbine – Parsons's turbine                                       |  |  |
| 28.   |                  | condition for maximum utilization factor                                   |  |  |
| 29.   |                  | reaction staging                                                           |  |  |
| 30.   |                  | Problems.                                                                  |  |  |





|     |                  | Department of Meenamear Engineering                                         |
|-----|------------------|-----------------------------------------------------------------------------|
| 31. |                  | Module – IV                                                                 |
|     |                  | Hydraulic Turbines: Classification, various efficiencies.                   |
| 32. |                  | Pelton turbine – velocity triangles, design parameters,                     |
| 33. |                  | Maximum efficiency.                                                         |
| 34. | 16/09/2019       | Francis turbine - velocity triangles                                        |
| 35. | То               | design parameters                                                           |
| 36. | 28/09/2019       | runner shapes for different blade speeds                                    |
| 37. |                  | Draft tubes- Types and functions.                                           |
| 38. |                  | Kaplan and                                                                  |
|     |                  | Propeller turbines - velocity triangles                                     |
| 39. |                  | design parameters                                                           |
| 40. |                  | Problems                                                                    |
| 41. |                  | Module –V                                                                   |
|     |                  | Centrifugal Pumps: Classification and parts of centrifugal pump, different  |
|     |                  | heads and efficiencies of centrifugal pump,                                 |
| 42. |                  | Minimum speed for starting                                                  |
|     |                  | the flow, Maximum suction lift,                                             |
| 43. |                  | Net positive suction head, Cavitation, Need for priming                     |
| 44. | 01/10/2019<br>To | Pumps in series and parallel                                                |
| 45. | 30/11/2019       | Problems                                                                    |
| 46. |                  | Centrifugal Compressors: Stage velocity triangles, slip factor, power input |
|     |                  | factor, Stage work, Pressure developed,                                     |
| 47. |                  | stage efficiency and surging and                                            |
|     | 4                | problems. Axial flow Compressors:,.                                         |
| 48. |                  | Expression for pressure ratio developed in a stage, work done factor        |
| 49. |                  | efficiencies and stalling                                                   |
| 50. |                  | Problems.                                                                   |
|     |                  |                                                                             |

Staff Signature

HOD

Need of the Department, Mechanical Engineering Department R.Y.N. Engineering Collage, Cantonment, BELLARY-533 704





### **COURSE EVALUATION AND ASSESSMENT SCHEME-2019-20**

|                           |            | What                            | To<br>Whom | When/ Where<br>(Frequency in<br>the course)                                  | Max<br>Marks | Evidence<br>Collected |
|---------------------------|------------|---------------------------------|------------|------------------------------------------------------------------------------|--------------|-----------------------|
| spor                      | <b>T</b> A | Internal<br>Assessment<br>Tests |            | Thrice(Average<br>of the best two<br>will be<br>computed)                    | 30           | Blue Books            |
| Direct Assessment Meth    | IA         | Assignment                      |            | One(During<br>Semester)                                                      | 10           | Assignment<br>Books   |
|                           |            | Practical<br>Assessment         | Students   | Once                                                                         | 40           | Practical evaluation  |
|                           | FE         | Final<br>Examination            |            | End of Course<br>(Answering<br>One of two<br>questions from<br>five Modules) | 60           | Result sheet          |
|                           |            | Practical<br>Examination        |            | One question<br>from lot                                                     | 60           | Result sheet          |
| lirect<br>ssment<br>thods |            | Students<br>Feedback            | Students   | End of the                                                                   | -            | Questionnaire         |
| Ind<br>Asses<br>Met       |            | Course Exit<br>Survey           |            | course                                                                       |              |                       |

Questions for IA and FE will be designed to evaluate the various educational components (Bloom's taxonomy)





# ASSIGNMENT-I (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: V/A         | Max Marks:20 |
|-------------------------------------|----------------------|--------------|
| Course Name : Turbo Machines        | Course Code : 17ME53 |              |

| Q No | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                               | СО | BTL |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1    | Define a Turbo Machine. Illustrate the parts of turbo machines<br>with<br>neat sketch,Expain the difference between Turbo Machine and a<br>Positive Displacement Machine. ?                                                                                                                                                                                                                                                                             | 1  | 2   |
| 2    | A 1:10 reduced scale model of a submarine of is tested in a wind tunnel. The design speed of the submarine is 15x1.852kmph. The specific gravity of sea water is 1.026 and kinematic viscosity is 0.014 stoke. The density of air in the wind tunnel is 1.22 kg/m3 and its kinematic viscosity is 0.046 stoke. Calculate the velocity of air. If the drag measured on the model is 1133 N, predict the power required to drive the prototype submarine. | 1  | 4   |
| 3    | Expain the Effect of Reynolds number, Unit specific quantities<br>and<br>the Application of first and second law of thermodynamics to<br>turbo<br>machines?                                                                                                                                                                                                                                                                                             | 1  | 2   |
| 4    | The quantity of water available for a hydel station is 310 cumecs<br>under a head of 1.8m.Assuming speed of each turbine is 60 RPM<br>and efficiency of 85% find the no of turbines and power<br>produced by each turbine .Each turbine has a specific speed of<br>800                                                                                                                                                                                  | 1  | 4   |
| 5    | Expain the Velocity triangles for different values of degree of reaction?                                                                                                                                                                                                                                                                                                                                                                               | 2  | 2   |
| 6    | A model of a turbine built to a scale of 1:4 is tested under a head<br>of 10m.The prototype has to work under a head of 50m at 450<br>RPM (a) what speed should the model run be if it develops 60<br>kw using 0.9cumecs at this speed (b) what power will be<br>obtained from the prototype assuming that its efficiency is 3%<br>better than that of model.                                                                                           | 1  | 4   |
| 7    | Expain the significance of Pi terms and laws of similitude ?                                                                                                                                                                                                                                                                                                                                                                                            | 1  | 2   |
| 8    | At a stage of an Impulse turbine the mean blade dia is 0.75m, its rotational speed being 3500 RPM. The absolute velocity of fluid discharging from a nozzle inclined at 200 to the plane of the wheel is 275 m/sec. If the utilization factor is 0.9 and the relative velocity at rotor exit is 0.9 times that at the inlet, find at the inlet, find the inlet and exit rotor angle.                                                                    | 2  | 4   |
| 9    | Expain the following a) static state b) stagnation state c) stagnation<br>enthalpy .Derive the equations for degree of rection and utilization<br>factor for 50% reaction.                                                                                                                                                                                                                                                                              | 2  | 2,3 |

# RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI<br/>Department of Mechanical EngineeringIn a mixed flow turbo machine the fluid enters such that the<br/>absolute velocity is axial at inlet and at outlet relative velocity is<br/>radial. What is the degree of rection and energy input to the<br/>fluid, If relative velocity at outlet is same as tangential blade<br/>speed at inlet. The following data may be a) Inlet dia. is 16 cm b)<br/>exit dia. is 50cm c) speed is 3000 RPM d)Blade angle at inlet is<br/>450.24

IA Coordinator

Faculty Incharge





### INTERNAL ASSESSMENT TEST-I (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: V/A        | Date:14-09-2019<br>Time : 09:15 – 10:45am |
|-------------------------------------|---------------------|-------------------------------------------|
| Course Name : Turbo Machines        | Course Code : 17ME5 | 3                                         |
| Prerequisites: BTD and ATD          |                     |                                           |

### NOTE : Answer five questions, each carrying 6 marks Max Marks : 30

| Q<br>No | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks | CO | BTL |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|
| 1       | Define a Turbo Machine. Illustrate the parts of turbo machines with<br>neat sketch,Expain the difference between Turbo Machine and a<br>Positive Displacement Machine. ?<br><b>OR</b>                                                                                                                                                                                                                                                                              | 10    | 1  | 2   |
| 2       | A 1:10 reduced scale model of a submarine of is tested in a wind tunnel. The design speed of the submarine is 15x1.852kmph. The specific gravity of sea water is 1.026 and kinematic viscosity is 0.014 stoke. The density of air in the wind tunnel is 1.22 kg/m3 and its kinematic viscosity is 0.046 stoke. Calculate the velocity of air. If the drag measured on the model is 1133 N, predict the power required to drive the prototype submarine.            | 10    | 1  | 4   |
| 3       | Expain the Effect of Reynolds number, Unit specific quantities and<br>the Application of first and second law of thermodynamics to turbo<br>machines?<br><b>OR</b><br>The quantity of water available for a hydel station is 310 currecs                                                                                                                                                                                                                           | 10    | 1  | 2   |
| 4       | under a head of 1.8m.Assuming speed of each turbine is 60 RPM<br>and efficiency of 85% find the no of turbines and power<br>produced by each turbine .Each turbine has a specific speed of<br>800.                                                                                                                                                                                                                                                                 | 10    | 1  | 4   |
| 5       | <ul> <li>Expain the Velocity triangles for different values of degree of reaction?</li> <li>OR</li> <li>A model of a turbine built to a scale of 1:4 is tested under a head of 10m. The prototype has to work under a head of 50m at 450 RPM (a) what speed should the model run be if it develops 60 kw using 0.9cumecs at this speed (b) what power will be obtained from the prototype assuming that its efficiency is 3% better than that of model.</li> </ul> |       | 2  | 2   |
| 6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1  | 4   |
| 7       | Expain the significance of Pi terms and laws of similitude ?<br>OR<br>At a stage of an Impulse turbine the mean blade dia is 0.75m,its<br>rotational speed being 3500 RPM.The absolute velocity of fluid<br>discharging from a nozzle inclined at 200 to the plane of the                                                                                                                                                                                          | 10    | 1  | 2   |

| I | RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI | and a state   | ND A |
|---|--------------------------------------------------------------|---------------|------|
|   | Department of Mechanical Engineering                         | Provide State | NA   |

| an up |                                                                                                                                                                                                                                                                                                                                                                                                            |    |   | and all all all all all all all all all al |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|--------------------------------------------|
| 8     | wheel is 275 m/sec.If the utilization factor is 0.9 and the relative velocityat rotor exit is 0.9 times that at the inlet,find at the inlet,find the inlet and exit rotor angle.                                                                                                                                                                                                                           | 10 | 2 | 4                                          |
| 9     | Expain the following a) static state b) stagnation state c) stagnation<br>enthalpy .Derive the equations for degree of rection and utilization<br>factor for 50% reaction.                                                                                                                                                                                                                                 | 10 | 2 | 2,3                                        |
| 10    | In a mixed flow turbo machine the fluid enters such that the absolute velocity is axial at inlet and at outlet relative velocity is radial.What is the degree of rection and energy input to the fluid,If relative velocity at outlet is same as tangential blade speed at inlet.The following data may be a) Inlet dia. is 16 cm b) exit dia. is 50cm c) speed is 3000 RPM d)Blade angle at inlet is 450. | 10 | 2 | 4                                          |

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

PO (Program Outcome)

IA Coordinator

Signature of faculty





### Scheme of Evaluation-IA I (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: V/A         | Date: 12/03/2019 |  |  |  |
|-------------------------------------|----------------------|------------------|--|--|--|
| Course Name : Turbo Machines        | Course Code : 17ME53 |                  |  |  |  |
| Prerequisites: BTD and ATD          |                      |                  |  |  |  |

|         | <b>NOTE : Answer five questions, each carrying 6 marks</b>                                                                                                   | Max Marks : 30 |    |     |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-----|--|--|
| Q<br>No | QUESTIONS                                                                                                                                                    | Marks          | CO | BTL |  |  |
|         | Diagram (05)                                                                                                                                                 | 10             | 1  | 2   |  |  |
| 1       | Explanation (05)                                                                                                                                             |                |    |     |  |  |
| 2       | OR<br>predict the<br>power required to drive the prototype submarine. (10)                                                                                   | 10             | 1  | 4   |  |  |
| 3       | Explanation for Effect of Reynolds number (05)Unit specific quantities and the Application of first and second lawof thermodynamics to turbo machines(05)    | 10             | 1  | 2   |  |  |
| 4       | <b>OR</b><br>no of turbines and power produced by each turbine . (05+05)                                                                                     | 10             | 1  | 4   |  |  |
| 5       | Explanation for Velocity triangles for different values of degree of reaction (10) <b>OR</b>                                                                 | 10             | 2  | 2   |  |  |
| 6       | (a) what speed should the model run be if it develops 60 kw using 0.9cumecs at this speed (b) what power will be obtained from the prototype (05+05)         | 10             | 1  | 4   |  |  |
| 7       | Explanation for significance of Pi terms and laws of similitude?(10)                                                                                         | 10             | 1  | 2   |  |  |
| 8       | Find the inlet and exit rotor angle. (05+05)                                                                                                                 | 10             | 2  | 4   |  |  |
| 9       | Explanation for following a) static state b) stagnation state c)<br>stagnation enthalpy . (05)<br>Derive the equations for degree of rection and utilization | 10             | 2  | 2,3 |  |  |
| 10      | factor for 50% reaction. (05)                                                                                                                                | 10             | 2  | 4   |  |  |
| 10      | <b>OR</b><br>Find the degree of rection and energy input to the fluid (10)                                                                                   |                |    |     |  |  |

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

PO (Program Outcome)

IA Coordinator

N

Signature of faculty





### IA-I PERFORMANCE ANALYSIS

### **Internal Assessment I**

|                                                           | Q1  | Q2  | Q3  | Q4  | Q5  | Q6 | Q7  | Q8  | Q9  | Q10 |
|-----------------------------------------------------------|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|
| CO mapping                                                | 1   | 1   | 1   | 1   | 2   | 1  | 1   | 2   | 2   | 2   |
| Max Marks /Question                                       | 10  | 10  | 10  | 10  | 10  | 10 | 10  | 10  | 10  | 10  |
| Total marks of class<br>/question                         | 273 | 190 | 212 | 187 | 290 | 95 | 361 | 100 | 172 | 248 |
| No. of students<br>attended                               | 35  | 27  | 35  | 28  | 48  | 15 | 48  | 15  | 27  | 35  |
| No of students scored > 60% of marks/Question             | 35  | 27  | 35  | 28  | 48  | 15 | 48  | 15  | 27  | 35  |
| Percentage of students<br>scored>60% of<br>marks/Question | 35  | 27  | 35  | 28  | 48  | 15 | 48  | 15  | 27  | 35  |

### Note: 2017 & 2018 Scheme Format





# ASSIGNMENT-II (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: V/A         | Max Marks:10 |  |  |
|-------------------------------------|----------------------|--------------|--|--|
| Course Name : Turbo Machines        | Course Code : 17ME53 |              |  |  |

| Q<br>No | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | СО | BTL |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1       | Explain the Impulse and Rection Turbine with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2  | 3   |
| 2       | The following particulars refer to a single impulse turbine<br>.Mean diameter of blade ring 2.5 m,speed 3000rpm,nozzle<br>angle 20 <sub>0</sub> ,ratio of blade velocity to steam 0.4,blade friction<br>factor 0.8,blade angle at exit is 3 <sub>0</sub> less than that at the<br>inlet.Steam flow rate 36000 kg/h.Draw the velocity diagram for<br>moving blade and estimate (a) the power developed (b) the<br>blade efficiency.                                                                      | 4  | 3   |
| 3       | Explain the methods of compounding of steam turbine with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  | 3   |
| 4       | Steam issues from a nozzle to a De Laval turbine at a velocity<br>of 1000m/s.The nozzle angle is 20 <sub>0</sub> .The mean blade velocity is<br>400m/s.The blades are symmetrical.The mass flow rate is 1000<br>kg/h,friction factor is 0.8,nozzle efficiency is 0.95 calculate (a)<br>Blade angle (b) Axial thrust (c) WD/kg (d) Power developed<br>(e) Blade efficiency (f) Stage efficiency                                                                                                          | 4  | 3   |
| 5       | Explain the Pelton wheel with its main components with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2  | 4   |
| 6       | A pelton wheel develops 5800 kw under a net head of 180m at<br>a speed of 195 rpm.Find the discharge through the turbine ,the<br>wheel diameter,the number of jets required and specific<br>speed.use the following assumptions overall efficiency<br>86%,D/d=12, =0.45 and Cv=0.985.                                                                                                                                                                                                                   | 4  | 4   |
| 7       | Expain the Francis Turbine with its main components with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2  | 4   |
| 8       | The external and internal diamters of an inward flow<br>rection turbine are 2.0 m and 1.0 m respectively. The head<br>on the turbine is 60 m. The width of the vane at inlet and<br>oulet are same and equal to 0.25 m. The runner vanes are<br>radial at inlet and the discharge is radil at outlet. The speed<br>is 200 rpm and the discharge is 6 m3/s. Determine (a) The<br>vane angle at outlet and inlet of the runner.<br>(b) The hydraulic efficiency.                                          | 4  | 4   |
| 9       | A double jet pelton wheel is required to generate 7500 kW<br>when the available head at the base of the nozzle is 400 m.The<br>jet is deflected through 1650 and the relative velocity of the jet<br>is reduced by 15 in passing over the buckets.Determine (a) the<br>dismeter of the jet (b) the total flow (c) the force exerted by the<br>jets in tangential direction.Assume generator efficiency of<br>95%,overall efficiency of 80%,blade speed ratio of 0.47 and<br>nozzle coefficient of 0.98. | 4  | 4   |
| 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |



| tranite thinks |                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | (SELINY, GENERAL SELECTION) |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|
| 10             | The following data pertains to Francis turbine.Shaft power<br>1000 kw,head 200m,overall efficiency 85%,speed 540<br>rpm,velocity of flow at inlet 9 m/s,The ratioof width to<br>diameter of wheel at inlet 1/10,hydraulic efficiency 87%,area<br>occupied by thickness of blades 7.5%,Find (a) the area of flow<br>(b) the angle of entry (c)the tangential velocity and (d) the<br>velocity of whirl at the inlet if the discharge is radil. | 4 | 4                           |

IA Coordinator





# RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering



|                                                                                      | INTERNAL ASSESSMENT TEST-II (2019-20 Odd Sem)                                                                                                                                                                                                                                                                                              |                                                      |        |               |     |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|---------------|-----|--|--|--|
| Staff Name : Dr Manjunatha KondekalSem/Sec: ADate: 20/10/2019Time : 9:15 TO 10:45 AM |                                                                                                                                                                                                                                                                                                                                            |                                                      |        |               |     |  |  |  |
| Course Name : Turbo Machines     Course Code : 17ME53                                |                                                                                                                                                                                                                                                                                                                                            |                                                      |        |               |     |  |  |  |
| Prerequisites: BTD and ATD                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                      |        |               |     |  |  |  |
|                                                                                      | NOTE: Answer five questions, each                                                                                                                                                                                                                                                                                                          | i carrying o marks                                   | s ivia | IX MARKS : 50 |     |  |  |  |
| Q<br>No                                                                              | QUESTIONS                                                                                                                                                                                                                                                                                                                                  |                                                      | Marks  | СО            | BTL |  |  |  |
| 1                                                                                    | Explain the Impulse and Rection Turbine with ne<br>OR<br>The following particulars refer to a single impuls                                                                                                                                                                                                                                | eat sketch?<br>e turbine                             | 10     | 2             | 3   |  |  |  |
| 2                                                                                    | .Mean diameter of blade ring 2.5 m,speed 3000rp<br>angle 20 <sub>0</sub> ,ratio of blade velocity to steam 0.4,blad<br>factor 0.8,blade angle at exit is 3 <sub>0</sub> less than that at<br>inlet.Steam flow rate 36000 kg/h.Draw the veloci<br>moving blade and estimate (a) the power develop<br>blade efficiency.                      | 10                                                   | 4      | 3             |     |  |  |  |
| 3                                                                                    | Explain the methods of compounding of steam tu neat sketch?                                                                                                                                                                                                                                                                                | 10                                                   | 2      | 3             |     |  |  |  |
| 4                                                                                    | Steam issues from a nozzle to a De Laval turbine<br>of 1000m/s.The nozzle angle is 200.The mean bla<br>400m/s.The blades are symmetrical.The mass flo<br>kg/h,friction factor is 0.8,nozzle efficiency is 0.93<br>Blade angle (b) Axial thrust (c) WD/kg (d) Powe<br>(e) Blade efficiency (f) Stage efficiency                             | 10                                                   | 4      | 3             |     |  |  |  |
| 5                                                                                    | Explain the Pelton wheel with its main component sketch?                                                                                                                                                                                                                                                                                   | 10                                                   | 2      | 4             |     |  |  |  |
| 6                                                                                    | A pelton wheel develops 5800 kw under a net here<br>a speed of 195 rpm.Find the discharge through the<br>wheel diameter, the number of jets required and sp<br>speed.use the following assumptions overall effice<br>86%, D/d=12, =0.45 and Cv=0.985.                                                                                      | ad of 180m at<br>e turbine ,the<br>pecific<br>eiency | 10     | 4             | 4   |  |  |  |
| 7                                                                                    | Expain the Francis Turbine with its main compor<br>sketch?<br>OR<br>The external and internal diamters of an inwa                                                                                                                                                                                                                          | nents with neat                                      | 10     | 2             | 4   |  |  |  |
| 8                                                                                    | rection turbine are 2.0 m and 1.0 m respective<br>on the turbine is 60 m. The width of the vane<br>oulet are same and equal to 0.25 m. The runner<br>radial at inlet and the discharge is radil at out<br>is 200 rpm and the discharge is 6 m3/s. Detern<br>vane angle at outlet and inlet of the runner.<br>(b) The hydraulic efficiency. | 10                                                   | 4      | 4             |     |  |  |  |
| 9                                                                                    | A double jet pelton wheel is required to generate<br>when the available head at the base of the nozzle<br>jet is deflected through 1650 and the relative velo                                                                                                                                                                              | 7500 kW<br>is 400 m.The<br>city of the jet           | 10     | 4             | 4   |  |  |  |

| RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI<br>Department of Mechanical Engineering |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |   |   |  |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|--|--|--|
| 10                                                                                                   | is reduced by 15 in passing over the buckets.Determine (a) the<br>dismeter of the jet (b) the total flow (c) the force exerted by the<br>jets in tangential direction.Assume generator efficiency of<br>95%,overall efficiency of 80%,blade speed ratio of 0.47 and<br>nozzle coefficient of 0.98.<br><b>OR</b><br>The following data pertains to Francis turbine.Shaft power<br>1000 kw,head 200m,overall efficiency 85%,speed 540<br>rpm,velocity of flow at inlet 9 m/s,The ratioof width to<br>diameter of wheel at inlet 1/10,hydraulic efficiency 87%,area<br>occupied by thickness of blades 7.5%,Find (a) the area of flow<br>(b) the angle of entry (c)the tangential velocity and (d) the<br>velocity of whirl at the inlet if the discharge is radil. | 10 | 4 | 4 |  |  |  |

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

PO (Program Outcome)

IA Coordinator

# Signature of faculty





| Scheme of Evaluation-IA II (2019-20 Odd Sem) |                                                                                                        |                                                                      |                  |    |     |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|----|-----|--|--|--|--|
| Sta                                          | Staff Name : Dr Manjunatha Kondekal Sem/Sec: A                                                         |                                                                      | Date: 20/10/2019 |    |     |  |  |  |  |
| Co                                           | Course Name : Turbo Machines     Course Code : 17ME53                                                  |                                                                      |                  |    |     |  |  |  |  |
| Pre                                          | Prerequisites: BTD and ATD                                                                             |                                                                      |                  |    |     |  |  |  |  |
|                                              | NOTE : Answer five questions, each carrying 6 marksMax Marks : 30                                      |                                                                      |                  |    |     |  |  |  |  |
| Q<br>No                                      | QUESTIONS                                                                                              |                                                                      | Marks            | СО | BTL |  |  |  |  |
| 1                                            | Explanation for Impulse and Rection Turbine w                                                          | Explanation for Impulse and Rection Turbine with neat sketch (05+05) |                  |    |     |  |  |  |  |
| 2                                            | Estimate (a) the power developed (b) the blade                                                         | 10                                                                   | 4                | 3  |     |  |  |  |  |
| 3                                            | Explanation for methods of compounding of ste<br>neat sketch (10)                                      | 10                                                                   | 2                | 3  |     |  |  |  |  |
| 4                                            | (a)Blade angle (b) Axial thrust (c) WD/kg (d) F<br>(e) Blade efficiency (f) Stage efficiency (2x5=1    | 10                                                                   | 4                | 3  |     |  |  |  |  |
| 5                                            | Explanation for Pelton wheel with its main com<br>Sketch (10)                                          | 10                                                                   | 2                | 4  |     |  |  |  |  |
| 6                                            | Find the discharge through the turbine ,the whe jets required (10)                                     | el diameter, the number of                                           | 10               | 4  | 4   |  |  |  |  |
| 7                                            | Explanation for Francis Turbine with its main co<br>Sketch (10)                                        | omponents with neat                                                  | 10               | 2  | 4   |  |  |  |  |
| 8                                            | (b) The hydraulic efficiency. (5x5=10)                                                                 | 10                                                                   | 4                | 4  |     |  |  |  |  |
| 9                                            | Determine (a) the dismeter of the jet (b) the exerted by the jets in tangential direction. (10)        | 10                                                                   | 4                | 4  |     |  |  |  |  |
| 10                                           | Find (a) the area of flow(b) the angle of entry<br>and (d) thevelocity of whirl at the inlet if the di | (c)the tangential velocity scharge is radil. (10)                    | 10               | 4  | 4   |  |  |  |  |

### Scheme of Evaluation-IA II (2019-20 Odd Sem)

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

PO (Program Outcome)

e of faculty Signat

IA Coordinator





### IA-II PERFORMANCE ANALYSIS

|                                                              | Q1  | Q2  | Q3  | Q4  | Q5  | Q6  | Q7  | Q8  | Q9  | Q10 |
|--------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CO mapping                                                   | 2   | 4   | 2   | 4   | 2   | 4   | 2   | 4   | 4   | 4   |
| Max Marks<br>/Question                                       | 10  | 10  | 10  | 10  | 10  | 10  | 10  | 10  | 10  | 10  |
| Total marks of<br>class /question                            | 304 | 133 | 237 | 155 | 260 | 142 | 309 | 181 | 137 | 309 |
| No. of students<br>attended                                  | 42  | 20  | 43  | 23  | 42  | 21  | 42  | 25  | 20  | 43  |
| No of students<br>scored > 60%<br>of<br>marks/Question       | 42  | 20  | 43  | 23  | 42  | 21  | 42  | 25  | 20  | 43  |
| Percentage of<br>students<br>scored>60% of<br>marks/Question | 42  | 20  | 43  | 23  | 42  | 21  | 42  | 25  | 20  | 43  |

### **Internal Assessment II**

### Note: 2017 & 2018 Scheme Format





# ASSIGNMENT-III (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: A          | Max Marks:10 |
|-------------------------------------|---------------------|--------------|
| Course Name : Turbo Machines        | Course Code : 17ME5 | 53           |

| Q<br>No | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СО | BTL |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 1       | Explain the Classification and parts of centrifugal pump with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                                | 2  | 5   |
| 2       | A centrifugal pump delivers 1800 lit/min against a total<br>height of 20m.its speed is 1450 rpm,Inner and outer<br>diameters of impeller are 120mm and 240mm respectively<br>and the diameter of suction and delivery pipes are both<br>100mm.Detrimine the blade angles 1 and 2 of the<br>impeller vane if the water enters radially.neglect friction<br>and other losses                                                                                                                                | 4  | 5   |
| 3       | Explain the different heads and efficiencies of centrifugal pump and Minimum speed for starting the flow?                                                                                                                                                                                                                                                                                                                                                                                                 | 2  | 5   |
| 4       | A centrifugal pump having outer diameter equal to two<br>times the inner diameter and running at 1000rpm works<br>against a total head of 40m.the The velocity of flow<br>through the impeller is constant and equal to 2.5m/sec.<br>vanes are set back at an angle of 400 at outlet.If the outer<br>diameter of the impeller is 50cm and width at outlet is<br>5cm.determine a) the vane angle at the inlet b) the work<br>done per second by the impeller on water and c) the<br>manometric efficiency. | 4  | 5   |
| 5       | Explain the Centrifugal Compressors with Stage velocity triangles and slip factor?                                                                                                                                                                                                                                                                                                                                                                                                                        | 2  | 5   |
| 6       | Air at a temperature of 290K,flows in a centrifugal<br>compressor running at 20,000rpm,slip factor =0.8,Total to<br>total efficiency=80%,d2=0.60m.Assume that the absolute<br>velocities at the inlet and outlet are same.Calculate a) the<br>temperature rise of air passing through the compressor<br>b)the stage pressure ratio.                                                                                                                                                                       | 4  | 5   |
| 7       | Explain the power input factor, Stage work, Pressure developed, stage efficiency and surging and problems in Centrifugal Compressors?                                                                                                                                                                                                                                                                                                                                                                     | 2  | 5   |
| 8       | Free air delivered by a compressor is 20kg/min.The inlet<br>conditions are 1bar and 20oC static.The velocity of air at<br>the inlet is 60 m/sec.The isentropic efficiency of the<br>compressor is 0.7.The total head pressure ratio is 3.Find<br>a) the total head temperature at the exit b) the power<br>required by the compressor if the mechanical efficiency is<br>95%.                                                                                                                             | 4  | 5   |

|            |    | RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI<br>Department of Mechanical Engineering         |   |                    |  |  |  |  |
|------------|----|--------------------------------------------------------------------------------------------------------------|---|--------------------|--|--|--|--|
| Veryn egad | 9  | Explain the Axial flow Compressors with neat sketch and efficiencies and stalling?                           | 2 | 5 (mins.man.eline) |  |  |  |  |
|            | 10 | Derive an expression for pressure ratio developed in a stage and work done factor in Axial flow Compressors? | 2 | 5                  |  |  |  |  |

IA CO-Ordinator

Faculty Incharge





### INTERNAL ASSESSMENT TEST-III (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal | Sem/Sec: A          | Date: 19/05/2019<br>Time : 9:15 TO 11:00 AM |
|-------------------------------------|---------------------|---------------------------------------------|
| Course Name : Turbo Machines        | Course Code : 17ME5 | 3                                           |
| Prerequisites: BTD and ATD          |                     |                                             |

|         | NOTE : Answer five questions, each carrying 6 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max Marl | <b>xs : 30</b> |     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----|
| Q<br>No | QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks    | CO             | BTL |
| 1       | Explain the Classification and parts of centrifugal pump<br>with neat sketch?                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | 2              | 5   |
| 2       | A centrifugal pump delivers 1800 lit/min against a total<br>height of 20m.its speed is 1450 rpm,Inner and outer<br>diameters of impeller are 120mm and 240mm respectively<br>and the diameter of suction and delivery pipes are both<br>100mm.Detrimine the blade angles 1 and 2 of the<br>impeller vane if the water enters radially.neglect friction<br>and other losses                                                                                                                                | 10       | 4              | 5   |
| 3       | Explain the different heads and efficiencies of centrifugal<br>pump and Minimum speed for starting the flow?<br><b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                 | 10       | 2              | 5   |
| 4       | A centrifugal pump having outer diameter equal to two<br>times the inner diameter and running at 1000rpm works<br>against a total head of 40m.the The velocity of flow<br>through the impeller is constant and equal to 2.5m/sec.<br>vanes are set back at an angle of 400 at outlet.If the outer<br>diameter of the impeller is 50cm and width at outlet is<br>5cm.determine a) the vane angle at the inlet b) the work<br>done per second by the impeller on water and c) the<br>manometric efficiency. | 10       | 4              | 5   |
| 5       | Explain the Centrifugal Compressors with Stage velocity triangles and slip factor?<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                  | 10       | 2              | 5   |
| 6       | Air at a temperature of 290K,flows in a centrifugal<br>compressor running at 20,000rpm,slip factor =0.8,Total to<br>total efficiency=80%,d2=0.60m.Assume that the absolute<br>velocities at the inlet and outlet are same.Calculate a) the<br>temperature rise of air passing through the compressor<br>b)the stage pressure ratio.                                                                                                                                                                       | 10       | 4              | 5   |
| 7       | Explain the power input factor, Stage work, Pressure<br>developed, stage efficiency and surging and problems in<br>Centrifugal Compressors?                                                                                                                                                                                                                                                                                                                                                               | 10       | 2              | 5   |
| 8       | <b>OK</b><br>Free air delivered by a compressor is 20kg/min.The inlet<br>conditions are 1bar and 20 <sub>0</sub> C static.The velocity of air at<br>the inlet is 60 m/sec.The isentropic efficiency of the                                                                                                                                                                                                                                                                                                | 10       | 4              | 5   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |     |





|    | compressor is 0.7.The total head pressure ratio is 3.Find<br>a) the total head temperature at the exit b) the power<br>required by the compressor if the mechanical efficiency is<br>95%. |    |   |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 9  | Explain the Axial flow Compressors with neat sketch and efficiencies and stalling?                                                                                                        | 10 | 2 | 5 |
| 10 | Derive an expression for pressure ratio developed in a stage and work done factor in Axial flow Compressors?                                                                              | 10 | 2 | 5 |

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

PO (Program Outcome)

IA Coordinator

Signature of faculty





### Scheme of Evaluation-IA III (2019-20 Odd Sem)

| Staff Name : Dr Manjunatha Kondekal                   | Sem/Sec: A | Date: 27/04/2017 |  |
|-------------------------------------------------------|------------|------------------|--|
| Course Name : Turbo Machines     Course Code : 17ME53 |            |                  |  |
| Prerequisites: BTD and ATD                            |            |                  |  |

|         | NOTE : Answer five questions, each carrying 6 marks       Max Marks : 30                                                                     |       |    |     |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|--|--|--|
| Q<br>No | QUESTIONS                                                                                                                                    | Marks | СО | BTL |  |  |  |
| 1       | Explanation for Classification and parts of centrifugal pump with neat sketch $(5+5=10)$                                                     | 10    | 2  | 5   |  |  |  |
| 2       | Determine the blade angles of the impeller vane if the water enters radially.neglect friction and other losses $(5+5=10)$                    | 10    | 4  | 5   |  |  |  |
| 3       | Explanation for different heads and efficiencies of centrifugal pump and Minimum speed for starting the flow (05+05=10)                      | 10    | 2  | 5   |  |  |  |
| 4       | Determine a) the vane angle at the inlet b) the work<br>done per second by the impeller on water and c) the<br>manometric efficiency. (10)   | 10    | 4  | 5   |  |  |  |
| 5       | Explanation for the Centrifugal Compressors with Stage velocity triangles and slip factor (05+05=10)                                         | 10    | 2  | 5   |  |  |  |
| 6       | Calculate a) the temperature rise of air passing through the compressor<br>b)the stage pressure ratio. $(05+05=10)$                          |       | 4  | 5   |  |  |  |
| 7       | Explanation for the power input factor, Stage work, Pressure developed, stage efficiency and surging and problems in Centrifugal Compressors | 10    | 2  | 5   |  |  |  |
| 8       | Find a) the total head temperature at the exit b) the power required by the compressor $(05+05=10)$                                          | 10    | 4  | 5   |  |  |  |
| 9       | Explanation for the Axial flow Compressors with neat sketch and efficiencies and stalling (05+05=10)                                         | 10    | 2  | 5   |  |  |  |
| 10      | Derive an expression for pressure ratio developed in a stage and work done factor in Axial flow Compressors (05+05=10)                       | 10    | 2  | 5   |  |  |  |

Note: BTL (Blooms Taxonomy Level) CO (Course Outcome)

IA Coordinator

PO (Program Outcome)

Signature of faculty





### **IA-3 PERFORMANCE ANALYSIS**

### **Internal Assessment 3**

|                                                              | Q1  | Q2  | Q3  | Q4 | Q5  | Q6  | Q7  | Q8  | Q9  | Q10 |
|--------------------------------------------------------------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|
| CO mapping                                                   | 2   | 4   | 2   | 4  | 2   | 4   | 2   | 4   | 2   | 2   |
| Max Marks<br>/Question                                       | 10  | 10  | 10  | 10 | 10  | 10  | 10  | 10  | 10  | 10  |
| Total marks of<br>class /question                            | 144 | 306 | 314 | 99 | 218 | 237 | 293 | 117 | 155 | 265 |
| No. of students<br>attended                                  | 21  | 41  | 46  | 15 | 33  | 31  | 41  | 17  | 25  | 35  |
| No of students<br>scored > 60%<br>of<br>marks/Question       | 21  | 41  | 46  | 15 | 33  | 31  | 41  | 17  | 25  | 35  |
| Percentage of<br>students<br>scored>60% of<br>marks/Question | 21  | 41  | 46  | 15 | 33  | 31  | 41  | 17  | 25  | 35  |

### Note: 2017 & 2018 Scheme Format





### **REMEDIAL AND TUTORIAL CLASSES INFORMATION**

| Sl.No | Topic Covered                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------|
| 01    | Introduction: Definition of turbo machine, parts of turbo machines                                                     |
| 02    | Comparison with positive displacement machines, Classification,                                                        |
| 03    | Energy exchange in Turbo machines: Euler's turbine equation, Alternate form of Euler's turbine equation,               |
| 04    | Velocity triangles for different values of degree of reaction                                                          |
| 05    | Components of energy transfer                                                                                          |
| 06    | Degree of Reaction, utilization factor                                                                                 |
| 07    | Energy exchange in Turbo machines: Euler's turbine equation, Alternate form of Euler's turbine equation,               |
| 08    | Velocity triangles for different values of degree of reaction                                                          |
| 09    | Components of energy transfer                                                                                          |
| 10    | Degree of Reaction, utilization factor                                                                                 |
| 11    | Hydraulic Turbines: Classification, various efficiencies.                                                              |
| 12    | Pelton turbine – velocity triangles, design parameters,                                                                |
| 13    | Maximum efficiency.                                                                                                    |
| 14    | Francis turbine - velocity triangles                                                                                   |
| 15    | Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, |
| 16    | Minimum speed for starting<br>the flow, Maximum suction lift,                                                          |
| 17    | Net positive suction head, Cavitation, Need for priming                                                                |
| 18    | Expression for pressure ratio developed in a stage, work done factor                                                   |

Signature of faculty

HOD

Heed of the Department, Mechanical Engineering Department, R.Y.M. Engineering Collage, Cantonment, BELLARY-533 104



### RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering FINAL CIE, AND SEE MARKS



|           | Faculty:   | DR MANJUNATHA K                    | ONDEKAL        |                     |                   |
|-----------|------------|------------------------------------|----------------|---------------------|-------------------|
|           | Subject:   | TURBOMACHINES                      |                |                     |                   |
|           | Code:      | 17C303                             |                |                     |                   |
|           | SEM:       | V                                  | S              | EC: A               |                   |
|           |            | CAY                                | 2019-20        |                     |                   |
|           |            |                                    |                | 17C303              |                   |
| Sl.<br>No | USN NO     | NAME                               | Internal marks | Assignment<br>Marks | External<br>marks |
|           |            |                                    | 30             | 10                  | 60                |
| A-1       | 3VC16ME007 | ABHISHEK SINHA                     | 23             | 10                  | 14                |
| A-2       | 3VC17ME001 | AJAY REDDY N                       | 36             | 10                  | 31                |
| A-3       | 3VC17ME002 | AKASHA GOUDA H                     | 40             | 10                  | 55                |
| A-4       | 3VC17ME003 | ANIL KITTUR                        | 38             | 10                  | 53                |
| A-5       | 3VC17ME004 | BHARATHISHA A B                    | 35             | 10                  | 48                |
| A-6       | 3VC17ME005 | BHARGHAV R                         | 29             | 10                  | 18                |
| A-7       | 3VC17ME006 | C ESHWAR                           | 32             | 10                  | 14                |
| A-8       | 3VC17ME007 | DEEPAK PATIL S R                   | 23             | 10                  | 21                |
| A-9       | 3VC17ME008 | DODDA BASAVA B                     | 30             | 10                  | 23                |
| A-10      | 3VC17ME009 | DURJAYA K B                        | 29             | 10                  | 21                |
| A-11      | 3VC17ME010 | EARESH VARMA C                     | 34             | 10                  | 21                |
| A-12      | 3VC17ME012 | ERANAGOUDA K M                     | 34             | 10                  | 25                |
| A-13      | 3VC17ME014 | G RANJITH                          | 37             | 10                  | 21                |
| A-14      | 3VC17ME016 | G S SREE HARSHA                    | 30             | 10                  | 16                |
| A-15      | 3VC17ME018 | GANESH GOWDA M                     | 37             | 10                  | 24                |
| A-16      | 3VC17ME019 | GANESH J                           | 29             | 10                  | 23                |
| A-17      | 3VC17ME020 | GURUSIDDANA GOUDA<br>B             | 27             | 10                  | 24                |
| A-18      | 3VC17ME021 | HAMPANNA                           | 32             | 10                  | 21                |
| A-19      | 3VC17ME022 | HANUMESH                           | 28             | 10                  | 14                |
| A-20      | 3VC17ME023 | JAFERSADIQ M ABDUL<br>KHADER BASHA | 30             | 10                  | 21                |
| A-21      | 3VC17ME024 | JAGADEESH                          | 30             | 10                  | 21                |
| A-22      | 3VC17ME025 | JEFFREY SUJAN<br>KUMAR K           | 25             | 10                  | 11                |
| A-23      | 3VC17ME027 | KADUBURU MATH<br>PARIKSHITH        | 34             | 10                  | 21                |
| A-24      | 3VC17ME028 | KAISARAHMED D                      | 31             | 10                  | 23                |



| A-25 | 3VC17ME029  | KARTHIK KUMAR D            | 24 | 10 | 26 |
|------|-------------|----------------------------|----|----|----|
| A-26 | 3VC17ME030  | KARTHIK R B                | 36 | 10 | 27 |
| A-27 | 3VC17ME031  | KIRAN MATH                 | 31 | 10 | 35 |
| A-28 | 3VC17ME032  | LOKESHA NAIK               | 37 | 10 | 23 |
| A-29 | 3VC17ME033  | M CHAITANYA                | 37 | 10 | 24 |
| A-30 | 3VC17ME041  | MOHAMMED AZAM I            | 25 | 10 | 14 |
| A-31 | 3VC17ME043  | MOHAN E                    | 20 | 10 | 11 |
| A-32 | 3VC17ME046  | NAVEEN SURAGOUNI           | 29 | 10 | 13 |
| A-33 | 3VC17ME049  | PAVAN KUMAR B              | 34 | 10 | 21 |
| A-34 | 3VC17ME054  | PAVITHRA R                 | 37 | 10 | 21 |
| A-35 | 3VC17ME081  | VINAY KUMAR S              | 21 | 10 | 21 |
| A-36 | 3VC18ME401  | ANAND K R                  | 34 | 10 | 21 |
| A-37 | 3VC18MF402  | ANII, KUMAR V              | 30 | 10 | 8  |
| A-38 | 3VC18MF411  | H M LIDAY KUMAR            | 21 | 10 | 21 |
| A-39 | 2VC19ME412  | IMRAN ABDUL                | 23 | 10 | 7  |
| A-40 | 2VC19ME415  | WAREED BELGUMI             | 30 | 10 | 21 |
| A-41 | 2VC10ME412  |                            | 37 | 10 | 40 |
| A-42 | 3VC18ME418  | KIKAN KUMAR D              | 30 | 10 | 21 |
| A-43 | 3VC18ME420  |                            | 30 | 10 | 23 |
| A-44 | 3VC18WIE425 | MADHUSUDHAN B              | 29 | 10 | 32 |
| A-45 | 3VC18MIE424 | MAHANTESH H M              | 46 | 10 | 46 |
| A-46 | 3VC18ME425  | MANIKANTA K<br>MULLA ALTAF | 30 | 10 | 11 |
| A 47 | 3VC18ME431  | HUSSAIN                    | 40 | 10 | 40 |
| A-47 | 3VC18ME433  | NISAR AHAMED K M           | 40 | 10 | 40 |
| A-48 | 3VC18ME434  | G PAVAN KALYAN             | 27 | 10 | 9  |
| A-49 | 3VC18ME435  | PAVITHRA K                 | 37 | 10 | 33 |
| A-50 | 3VC18ME441  | SAGAR MP                   | 22 | 10 | 21 |
| A-51 | 3VC18ME443  | SAMPATH KUMAR Y M          | 28 | 10 | 22 |
| A-52 | 3VC18ME444  | SANTOSH G                  | 29 | 10 | 21 |
| A-53 | 3VC18ME446  | K SHIVA KUMAR              | 25 | 10 | 3  |
| A-54 | 3VC18ME449  | SHIVA SHANKAR ADUR         | 33 | 10 | 21 |
| A-55 | 3VC18ME454  | THIPPESWAMY B              | 30 | 10 | 24 |
| A-56 | 3VC18ME455  | THIPPESWAMY R              | 35 | 10 | 33 |
| A-57 | 3VC18ME457  | V SIDDHI VINAYAKA          | 28 | 10 | 11 |

| And a stante trong |            |                       |    |    | Unling-output with |
|--------------------|------------|-----------------------|----|----|--------------------|
| A-58               | 3VC18ME459 | VINOD KUMAR B         | 26 | 10 | 10                 |
| A-59               | 3VC18ME460 | VISHWANATH H          | 26 | 10 | 27                 |
| A-60               | 3VC18ME461 | VISHWANATH GOWDA<br>K | 23 | 10 | 14                 |
| A-61               | 3VC18ME462 | VYSHNAVI              | 32 | 10 | 13                 |
| A-62               | 3VC18ME464 | YESHWANTH D           | 25 | 10 | 15                 |
| A-63               | 3VC17ME425 | S MUSHTAQ AHMED       | 35 | 10 | 21                 |

HOD

Signature of faculty

Need of the Department, Mechanical Engineering Department, R.Y.M. Engineering Collage, Contonment, BELLARY-533 104





### **VTU QUESTION PAPER**







17ME53

OR

Prove that the degree of reaction for an axial flow compressor is given by V tan R + tan R

$$=\frac{\mathbf{v}_{*}}{2U}\left[\frac{\tan\beta_{2}+\tan\beta_{1}}{\tan\beta_{1}+\tan\beta_{2}}\right]$$

Where  $V_a = Axial$  component or flow velocity, U = tangential velocity of rotor,  $\beta_1$  and  $\beta_2$ are the rotor angles at inlet and exit measured with reference to tangential direction.

(10 Marks) b. A single stage axial flow blower with no inlet guide vanes, operates at 3600rpm. The tip and hub diameters of the rotor are 20cm and 12.5cm respectively. The air flow through the stage is 0.45kg/s. The air turned through an angle of 20° towards the axial direction during the passage through the rotor at the mean diameter. Assuming the inlet conditions of pressure of 1 bar and 25°C, constant axial velocity and no losses in the rotor, compute : i) The power input in KW ii) degree of reaction.

(10 Marks)

### Module-3

- Derive the condition for maximum blade efficiency with equip-angular blades in an impulse steam turbine. (08 Marks)
  - b. In a Curtis stage with two rows of moving blades, the rotors are equiangular. The first rotor has angle of 29° each while second rotor has angle of 32° each. The velocity of steam at the exit of nozzle is 530m/s and blade coefficients are 0.9 in the first moving row, 0.95 in the stator and in the second moving row. If the absolute velocity at the stage exit should be axial, find :
    - Mean blade speed i)
    - ii) The rotor efficiency iii) The power output for a steam flow rate of Ikg

(12 Marks)

(08 Marks)

### OR

Prove that the maximum blade efficiency in a Parason's reaction steam turbine is given by :

2 cos2 a  $1 + \cos^2 \alpha$ ,

At a stage of a turbine with Parasons's blading deliver dry saturated steam at 2.7 bar form fixed blades at 90m/s. The mean blade height is 40mm, and the moving blade exit angle is 20% The axial velocity of steam is 3/4 times the blade velocity at the mean radius. Steam is supplied to the stage at the rate of 9000kg/h. The effect of blade tip thickness on the annulus area can be neglected calculate : i) the wheel speed in RPM ii) the diagram efficiency iii) the diagram power iv) the enthalpy drop of the steam in this stage. (12 Marks)

### Module-4

With the necessary velocity triangles, show that the maximum hydraulic efficiency of a  $=\frac{1+c_b \cos \beta_2}{2}$ , where  $c_b = V_{r2}/V_{r1}$  and  $\beta_2$  is bucket tip angle. Pelton wheel is given by n

(08 Marks)

b. A double jet Pelton wheel is required to generate 7500KW when the available head at the base of the nozzle is 400m. The jet is deflected through 165° and the relative velocity of the jet is reduced by 15% in passing over the buckets. Determine : i) The diameter of each jet ii) total flow iii) force exerted by the jets in the tangential direction. Assume generator efficiency is 95%, overall efficiency is 80% and speed ratio = 0.47. (12 Marks) 2 of 3





OR

For Francis turbine, show that the hydraulic efficiency

conditions : i) the component of velocity normal to the tangential direction is constant from inlet to outlet ii) relative velocity at the inlet is radial iii) absolute velocity at the outlet is radial. Where  $\alpha_1$  = flow angle at inlet. Sketch the velocity triangles at inlet and outlet. (08 Marks)

b. An inward flow reaction turbine has a runner 0.5m diameter an d7.5cm wide. The inner diameter is 0.35m. The effective area of flow is 93% of the gross area and the flow velocity is constant. The guide vane angle is 23° inlet moving vane angle is 97° and the outlet vane angle is 30°. Assuming radial discharge at the exit, calculate the speed of the wheel so that the water enters without shock and the supply head of 60m. Assume hydraulic friction losses of 10% and mechanical efficiency as 94%. What is the specific speed of the machine?

(12 Marks)

(06 Marks)

(06 Marks)

17ME53

for the following

### Module-5

 a. Show that the pressure rise in the impeller of a centrifugal pump, when the frictional and other losses in the impeller are neglected, is given by

 $\frac{1}{2g} \left[ V_{f_1}^2 + u_2^2 - V_{f_2}^2 \cos e c^2 \beta_2 \right] \,.$ 

Where  $V_{f1}$  and  $V_{f2}$  are the flow velocities at inlet and out let of the impeller,  $u_2$  = tangential velocity of the impeller at exit and  $\beta_2$  = exit blade angle. (08 Marks)

- Derive an expression for minimum speed of CF pump to start the flow. (04 Marks) Find the power required to drive the CF pomp which delivers 0.04m<sup>3</sup>/p of water t a height of
- c. Find the power required to drive the CF pomp which delivers 0.04m<sup>3</sup>/p of water t a height of 20m through a 15cm diameter of pipe and 100m long. The overall efficiency of the pump is 70% and the friction factor is assumed to be 0.015. (08 Marks)

10 a. Explain the phenomena of :

Surging Stalling and

b.

- Choking in a centrifugal compressor stage.
- b. Show that the H-Q characteristic equation for centrifugal blower is given by  $H = K_{-} K_{-} O$

where 
$$\mathbf{K}_1 = \mathbf{u}_2^2 / \mathbf{g}$$
,  $\mathbf{K}_2 = \frac{\mathbf{u}_2 \cot \beta_2}{\mathbf{g}_1 \pi \mathbf{D}_2 \cdot \mathbf{b}_2}$ .

c. An axial flow compressor of 50% reaction design has blades with inlet and outlet angle with reference to axial direction of 45° and 10° respectively. The compressor is to produce a pressure ratio of 6 : 1 with an isentropic efficiency of 0.85 when inlet static temperature is 37°C. The blade speed and axial velocity are constant throughout the compressor. Assuming a blade speed of 200m/s, find the number of stages required if the work done factor is i) unity ii) 0.87 for all stages. (08 Marks)

3 of 3





and calculate the power developed if the axial thrust is 117.72 Newton's.

1 of 2

(08 Marks)





### 15ME53

(08 Marks)

- a. For a 50% reaction steam turbine, show that  $\alpha_1 = \beta_2$  and  $\alpha_2 = \beta_1$ , where  $\alpha_1$  and  $\beta_1$  are the inlet angles of fixed and moving blades,  $\alpha_2$  and  $\beta_2$  are the outlet blade angles of fixed and moving blade angles. (08 Marks)
  - b. In a reaction turbine, the inlet and outlet blade angles are 50° and 20° respectively. Steam enters at 18° to the plane of the rotor wheel and leaves at 40°. The rotor speed is 260 m/s. Calculate the speed ratio, specific work and degree of reaction. (08 Marks)

### Module-4

- a. Show that the maximum hydraulie efficiency of a Pelton wheel turbine is given by  $(\eta_{\rm h})_{\rm max} = \frac{1 + c_{\rm b} \cos\beta_2}{2}$ . Also draw the inlet and exit velocity triangles,  $c_{\rm b}$  is bucket velocity coefficient and  $\beta_2$  is exit blade angle. (08 Marks)
  - b. The penstock supplies water from a reservoir to the Pelton wheel with a gross head of 500 m. One third of the gross head is lost in friction in the penstock. The rate of flow of water through the nozzle fitted at the end of penstock is 2 m3/s. The angle of deflection of the jet is 165°. Determine the power given by the water to the runner and also hydraulic efficiency of the Pelton wheel. Take speed ratio = 0.45 and  $c_v = 1.0$ . (08 Marks)

### OR

- a. The following data are given for a Francis turbine net head = 70 m, speed = 600 rpm, power at the shaft = 367.5 KW, overall efficiency = 85%, hydraulic efficiency = 95%, flow ratio = 0.25, width ratio = 0.1, outer dia to inner dia ratio = 2. The thickness of the vanes occupy 10% of the circumferential area of the runner. Velocity of flow is constant at inlet and outlet and discharge is radial at outlet. Determine: (i) Guide blade angle (ii) Runner vane angles (iii) Diameter of runner at inlet and outlet (iv) Width of wheel at inlet.
  (08 Marks)
  - b. With a neat sketch, explain the working of Kaplan turbine. Mention the functions of draft tube. (08 Marks)

### Module-5

9 a. Explain the following with reference to centrifugal pump:

- i) Manometric efficiency with expression
- ii) Cavitation in pump
- iii) Need of priming
- iv) Pumps in series
- b. A centrifugal pump is designed to run at 1450 rpm with maximum discharge of 1800 litres/min against a total read of 20 m. The suction and delivery pipes are designed such that they are equal in size of 100 mm. If the inner and outer diameter of the impeller are 12 cm and 24 cm respectively, determine the blade angles β<sub>1</sub> and β<sub>2</sub> for radial entry. Neglect friction and other losses. (08 Marks)

### OR

- a. Explain the phenomena of slip factor, surging, stalling and chocking in centrifugal compressor. (08 Marks)
  - b. Air enters a three stage axial flow compressor at 1 bar and 300 K. the energy input is 25 kJ/kg per stage. The stage efficiency is 0.86. Calculate: (i) the exit static temperature (ii) the compressor efficiency (iii) the static pressure ratio. (08 Marks)

\* \* \* \* \* 2 of 2











### Module-3

15ME53

- Define compounding. List different types of compounding. Explain any one method of compounding with neat sketch showing variations of pressure and velocity of steam.
   (08 Marks)
  - b. The following particulars refer to a stage of a parsons steam turbine. Mean diameter of blade ring = 70 cm, steam velocity at inlet of moving blades = 160 m/s, outlet blade angles of moving blade  $\beta_2 = 20^\circ$ . Steam flow through the blades = 7 kg/s and speed 1500 rpm,  $\eta = 0.8$ . Draw the velocity diagram and find the following: i) Blade inlet angle ii) Power developed in the stage iii) Available isentropic enthalpy drop. (08 Marks)

### OR

- a. Derive the condition for maximum efficiency of an impulse steam turbine and show that the maximum efficiency is cos<sup>2</sup>α<sub>1</sub>.
   (08 Marks)
  - b. In a stage of an impulse turbine provided with single row wheel, the mean diameter of the blade ring is 80 cm and speed of rotation is 3000 rpm. The steam issues from the nozzles with a velocity of 300 m/s and the nozzle angle is 20°. The rotor blades are equiangular and blade velocity coefficient is 0.85. What is the power developed in the blades when the axial thrust on the blade is 140 N. (08 Marks)

### Module-4

- a. Show that for a maximum efficiency of peltan wheel, the bucket velocity is equal to half of the jet velocity. (08 Marks)
  - A double over hung peltan wheel unit is to produce 30000 KW at the generator under an effective head of 300 m at base of the nozzle. Find the size of the jet, mean diameter of the runner, speed and specific speed of the each peltan turbine. Assume generator efficiency = 93%, peltan wheel efficiency = 0.85, speed ratio = 0.46, jet velocity coefficient = 0.97 and jet ratio 12. (08 Marks)

### OR

- Show that pressure at the exit of the reaction turbine with draft tube is less than atmospheric pressure. (08 Marks)
- b. A Kaplan turbine produces 30000 KW under a head of 9.6 m, while running at 65.2 rpm. The discharge through the turbine is 350 m<sup>3</sup>/s. The tip diameter of the runner is 7.4 m. The hub diameter is 0.432 times the tip diameter. Calculate: 1) Turbine efficiency ii) Specific speed of the turbine iii) Speed ratio (based on tip diameter) iv) Flow ratio. (08 Marks)

### Module-5

9 a. Show that pressure rise in impeller of a centrifugal pump when the frictional and other

losses in impeller are neglected is given by  $\frac{1}{2g} \left[ v_{f_1}^2 + u_2^2 - v_{f_2}^2 \csc^2\beta_2 \right]$  where  $v_{f_1}$  and  $v_{f_2}$ 

are flow velocities at inlet and outlet of the impeller.  $u_2 =$  tangential speed of impeller at exit,  $\beta_2 =$  exit blade angle. (08 Marks)

b. A centrifugal pump has its impeller diameter 30 cm and a constant area of flow 210 cm<sup>2</sup>. The pump runs at 1440 rpm and delivers 90 LPS against a head of 25 m. If there is no whirl velocity at entry, compute the rise in pressure head across the impeller and hydraulic efficiency of pump. (08 Marks)

### OR

- a. Explain the working principle of the axial flow compressor along with a neat sketch of compressor with inlet guide vane. (08 Marks)
  - b. A 4 stage centrifugal pump has 4 identical impellers keyed to the same shaft. Speed of the shaft is 500 rpm. Total manometric head developed from 4 impellers is 50 m. The width at exit is 5 cm and diameter at exit is 60 cm. Whirl velocity at exit is 10 m/s, radial flow velocity at exit is 2 m/s. Calculate: i) Discharge ii) Exit vane angle iii) Manometric efficiency. (08 Marks)

### \* \* 2 of 2 \* \*







### 15ME53

(09 Marks)

- What do you mean by compounding of steam turbine? Explain with the help of a schematic diagram, a two row velocity compounded turbine stage. (06 Marks)
  - b. A single stage impulse wheel is supplied with super heated steam at 15 bar and 250°C, expands to 0.5 bar condenser pressure. The rotors are fitted with equi angular blades moving at 450 m/s. If the nozzle angle at the rotor inlet is 16° to the wheel plane, find the specific power output, blade efficiency, grass stage efficiency and direction of exit steam velocity. Assume nozzle efficiency as 94% and assume the relative velocities as equal. (10 Marks)
- a. Show that the maximum blade efficiency of a Parson's reaction turbine is,

 $\left(\eta_{\rm b}\right)_{\rm max} = \frac{2\cos^2\alpha_{\rm i}}{1+\cos^2\alpha_{\rm i}}$ 

where  $\alpha_1 = \text{nozzle}$  angle at inlet.

- b. The following particulars refer to a Parson's reaction turbine consisting of one ring of fixed blades and one ring of moving blades. The mean diameter of the blade ring is 90 cm and its speed is 3000 rpm. The inlet absolute velocity to the blades is 350 m/s. The blade outlet angle is 20°. The steam flow rate is 7.2 kg/s. Calculate (i) The blade inlet angle (ii) Tangential force (iii) Power developed. (07 Marks)
- With suitable velocity triangles, derive an expression for the maximum hydraulic efficiency of a Pelton wheel in terms of blade velocity co-efficient and outlet blade angle. (08 Marks)
  - b. A 137 mm diameter jet of water issuing from a nozzle impinges on the buckets of a Pelton wheel and the jet is deflected through an angle of 165° by the buckets. The head available at the nozzle is 400 m. Assuming coefficient of velocity as 0.97, speed ratio as 0.46 and reduction in the relative velocity while passing through the buckets as 15%, find (i) Force exerted by the jet on the buckets in the tangential direction (ii) theoretical power developed. (08 Marks)
- 8 a. List the functions of a draft tube in a reaction hydraulic turbine. Using Bernoulli's equation, show that the pressure head at the inlet of the draft tube is less than the atmospheric pressure head. (06 Marks)
  - b. The following data is given for a Francis turbine : Net head = 70 m, Speed = 600 rpm, Shaft power = 368 kW, Overall efficiency = 85%, hydraulic efficiency = 95%, Flow ratio = 0.25, Breadth ratio = 0.1, Outer diameter of the runner = 2 × inner diameter of the runner. Velocity of flow is constant at inlet and outlet. The thickness of the vanes occupies 10% of the circumferential area of the runner and the discharge is radial at outlet. Determine : (i) Guide blade angle (ii) Runner vane angles at inlet and outlet. (iii) Diameter of runner at inlet and outlet (iv) Width of the runner at inlet. (10 Marks)

a. What is Priming? Why priming is required in centrifugal pumps?

(03 Marks) (06 Marks)

(07 Marks)

- b. Derive an expression for minimum starting speed of a centrifugal pump. (06 Marks)
   c. A 4-stage centrifugal pump has impellers each of 38 cm diameter and 1.9 cm wide at outlet.
- The outlet vane angle is 45° and the vanes occupy 8% of the outlet area. The manometric efficiency is 84% and overall efficiency is 75%. Determine the head generated by the pump when running at 900 rpm discharging 59 litres/s of water. Also determine the power required. (07 Marks)
- 10 a. Explain the following with appropriate sketches :
  - (i) Surging (ii) Choking (iii) Pre-rotation. (09 Marks)
     b. A centrifugal compressor runs at a speed of 15000 rpm and delivers 30 kg/s of air. The exit diameter is 70 cm. The relative velocity at exit is 100 m/s at an exit blade angle of 75°. Assume radial inlet. The inlet total temperature and pressure are 300 K and 1 bar respectively. Determine :

(i) Power required to drive the compressor (ii) Ideal head developed

(iii) Total exit pressure.

2 of 2









### 15ME53

(08 Marks)

- a. What is compounding of steam turbine? Explain pressure compounding of steam turbine with a neat sketch. (08 Marks)
  - b. In a 50% reaction turbine, the blade tips are inclined at 35° and 20° in the direction of motion. At a certain place in the turbine, the drum diameter is 1 meter and the blades are 10cm high. At this place the steam having specific volume of 0.938m<sup>3</sup>/kg, passes through the blades without shock. Find the mass of steam flow and power developed of the speed of the turbine is 250rpm. (08 Marks)

### Module-4

- 7 a. Explain the working of Francis turbine with a neat sketch.
  - b. Determine the power given by the jet of water to the runner of a pelton wheel which is having tangential velocity as 20m/s. The net head on the turbine is 50m and discharge through the jet water is 0.03m<sup>3</sup>/s. The side clearance angle is 15° and take C<sub>V</sub> = 0.975. Find also the manometric efficiency. (08 Marks)

### OR

- a. Derive an expression for maximum efficiency of the pelton wheel giving the relationship between the jet speed and bucket speed. (08 Marks)
  - b. The external and internal diameters of an inward flow reaction turbine are 1.2m and 0.6m respectively. The head on the turbine is 22m and velocity of flow through the runner is constant and equal to 2.5m/s. The guide blade angle is given as 10° and the runner vanes are radial at inlet. If the discharge at outlet is radial determine : i) The speed of the turbine ii) The vane angle at outlet of the runner iii) Hydraulic efficiency. (08 Marks)

### Module-5

a. Derive an expression for the minimum speed for starting a centrifugal pump. (08 Marks)
 b. A three stage centrifugal pump has impellers 40cm in diameter and 2cm wide at outlet. The vanes area curved back at the outlet at 45° and reduce the circumferential area by 10%. The manometric efficiency is 90% and the overall efficiency is 80%. Determine the head generated by the pump when running at 1000rpm, delivering 50 litres per second. What should be the shaft power? (08 Marks)

### OR

10 a. With neat sketch, explain slip, slip coefficient and slip factor. (06 Marks) b. Explain phenomenon of surging. (02 Marks) c. An axial flow compressor has the following data: Entry conditions : 1 bar and 20°C Degree of reaction : 50% Mean blade ring diameter : 36cm Rotational speed : 18000rpm Blade angle at rotor and stator exit : 65° Axial velocity : 180m/s Mechanical efficient : 96.7% Find: i) Blade angle at rotor and stator inlet ii) Power required. (08 Marks) \*\*\*\*\* 10.00 2 of 2





# **COURSE EXIT SURVEY**

| R NO. | USN        | STUDENT NAME                          | 17C303.1 | 17C303.2 | 17C303.3 | 17C303.4 | 17C303.5 |
|-------|------------|---------------------------------------|----------|----------|----------|----------|----------|
| A-1   | 3VC16ME007 | ABHISHEK SINHA                        | 5        | 5        | 5        | 5        | 5        |
| A-2   | 3VC17ME001 | AJAY REDDY N                          | 5        | 5        | 5        | 5        | 5        |
| A-3   | 3VC17ME002 | AKASHA GOUDA H                        | 5        | 5        | 5        | 5        | 5        |
| A-4   | 3VC17ME003 | ANIL KITTUR                           | 5        | 5        | 5        | 5        | 5        |
| A-5   | 3VC17ME004 | BHARATHISHA A B                       | 5        | 5        | 5        | 5        | 5        |
| A-6   | 3VC17ME005 | BHARGHAV R                            | 5        | 5        | 5        | 5        | 5        |
| A-7   | 3VC17ME006 | C ESHWAR                              | 5        | 5        | 5        | 5        | 5        |
| A-8   | 3VC17ME007 | DEEPAK PATIL S R                      | 5        | 5        | 4        | 4        | 5        |
| A-9   | 3VC17ME008 | DODDA BASAVA B                        | 5        | 5        | 5        | 5        | 5        |
| A-10  | 3VC17ME009 | DURJAYA K B                           | 5        | 5        | 5        | 5        | 5        |
| A-11  | 3VC17ME010 | EARESH VARMA C                        | 5        | 5        | 5        | 5        | 5        |
| A-12  | 3VC17ME012 | ERANAGOUDA K M                        | 5        | 4        | 5        | 5        | 5        |
| A-13  | 3VC17ME014 | G RANJITH                             | 5        | 5        | 4        | 5        | 5        |
| A-14  | 3VC17ME016 | G S SREE HARSHA                       | 5        | 5        | 5        | 5        | 5        |
| A-15  | 3VC17ME018 | GANESH GOWDA M                        | 5        | 5        | 5        | 5        | 5        |
| A-16  | 3VC17ME019 | GANESH J                              | 5        | 4        | 5        | 5        | 5        |
| A-17  | 3VC17ME020 | GURUSIDDANA<br>GOUDA B                | 4        | 5        | 4        | 5        | 5        |
| A-18  | 3VC17ME021 | HAMPANNA                              | 5        | 5        | 5        | 5        | 5        |
| A-19  | 3VC17ME022 | HANUMESH                              | 5        | 5        | 5        | 5        | 4        |
| A-20  | 3VC17ME023 | JAFERSADIQ M<br>ABDUL KHADER<br>BASHA | 5        | 5        | 5        | 5        | 5        |
| A-21  | 3VC17ME024 | JAGADEESH                             | 5        | 5        | 5        | 5        | 5        |
| A-22  | 3VC17ME025 | JEFFREY SUJAN<br>KUMAR K              | 5        | 5        | 5        | 5        | 5        |
| A-23  | 3VC17ME027 | KADUBURU MATH<br>PARIKSHITH           | 5        | 5        | 5        | 5        | 5        |
| A-24  | 3VC17ME028 | KAISARAHMED D                         | 5        | 5        | 5        | 5        | 5        |
| A-25  | 3VC17ME029 | KARTHIK KUMAR D                       | 5        | 5        | 4        | 4        | 5        |
| A-26  | 3VC17ME030 | KARTHIK R B                           | 5        | 5        | 5        | 5        | 5        |
| A-27  | 3VC17ME031 | KIRAN MATH                            | 5        | 5        | 5        | 5        | 5        |
| A-28  | 3VC17ME032 | LOKESHA NAIK                          | 5        | 5        | 5        | 5        | 5        |
| A-29  | 3VC17ME033 | M CHAITANYA                           | 5        | 5        | 5        | 5        | 4        |
| A-30  | 3VC17ME041 | MOHAMMED AZAM J                       | 4        | 4        | 4        | 5        | 5        |
| A-31  | 3VC17ME043 | MOHAN E                               | 5        | 5        | 5        | 5        | 5        |
| A-32  | 3VC17ME046 | NAVEEN SURAGOUNI                      | 4        | 4        | 5        | 5        | 4        |
| A-33  | 3VC17ME049 | PAVAN KUMAR B                         | 4        | 5        | 5        | 5        | 5        |
| A-34  | 3VC17ME054 | PAVITHRA R                            | 5        | 4        | 5        | 4        | 4        |
| A-35  | 3VC17ME081 | VINAY KUMAR S                         | 5        | 4        | 4        | 5        | 5        |
| A-36  | 3VC18ME401 | ANAND K R                             | 5        | 5        | 5        | 4        | 4        |
| A-37  | 3VC18ME402 | ANIL KUMAR V                          | 4        | 4        | 4        | 5        | 5        |
| A-38  | 3VC18ME411 | H M UDAY KUMAR                        | 5        | 5        | 5        | 4        | 5        |
| A-39  | 3VC18ME413 | IMRAN ABDUL<br>WAHEED BELGUMI         | 5        | 5        | 5        | 5        | 5        |



|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contration of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3VC18ME415 | K VINAY KUMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME418 | KIRAN KUMAR D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME420 | KUMAR K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME423 | MADHUSUDHAN B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME424 | MAHANTESH H M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME425 | MANIKANTA K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME431 | MULLA ALTAF<br>HUSSAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME433 | NISAR AHAMED K M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME434 | G PAVAN KALYAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME435 | PAVITHRA K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME441 | SAGAR MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME443 | SAMPATH KUMAR Y<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME444 | SANTOSH G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME446 | K SHIVA KUMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME449 | SHIVA SHANKAR<br>ADUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME454 | THIPPESWAMY B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME455 | THIPPESWAMY R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME457 | V SIDDHI VINAYAKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME459 | VINOD KUMAR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME460 | VISHWANATH H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME461 | VISHWANATH<br>GOWDA K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME462 | VYSHNAVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC18ME464 | YESHWANTH D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3VC17ME425 | S MUSHTAQ AHMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 3VC18ME415         3VC18ME418         3VC18ME420         3VC18ME420         3VC18ME423         3VC18ME424         3VC18ME425         3VC18ME425         3VC18ME431         3VC18ME433         3VC18ME434         3VC18ME435         3VC18ME434         3VC18ME443         3VC18ME444         3VC18ME444         3VC18ME445         3VC18ME446         3VC18ME454         3VC18ME455         3VC18ME455         3VC18ME457         3VC18ME459         3VC18ME461         3VC18ME461         3VC18ME462         3VC18ME464 | 3VC18ME415K VINAY KUMAR3VC18ME418KIRAN KUMAR D3VC18ME420KUMAR K3VC18ME423MADHUSUDHAN B3VC18ME424MAHANTESH H M3VC18ME425MANIKANTA K3VC18ME425MANIKANTA K3VC18ME431MULLA ALTAF<br>HUSSAIN3VC18ME433NISAR AHAMED K M3VC18ME434G PAVAN KALYAN3VC18ME435PAVITHRA K3VC18ME436SAMPATH KUMAR Y<br>M3VC18ME441SAGAR MP3VC18ME443SAMPATH KUMAR Y<br>M3VC18ME444SANTOSH G3VC18ME445SHIVA SHANKAR<br>ADUR3VC18ME445THIPPESWAMY B3VC18ME455THIPPESWAMY R3VC18ME457V SIDDHI VINAYAKA3VC18ME459VINOD KUMAR B3VC18ME460VISHWANATH H3VC18ME461VISHWANATH GOWDA K3VC18ME462VYSHNAVI3VC18ME464YESHWANTH D3VC18ME464SHUVANTH D | 3VC18ME415K VINAY KUMAR43VC18ME418KIRAN KUMAR D43VC18ME420KUMAR K53VC18ME423MADHUSUDHAN B43VC18ME424MAHANTESH H M53VC18ME425MANIKANTA K43VC18ME431MULLA ALTAF<br>HUSSAIN53VC18ME433NISAR AHAMED K M53VC18ME434G PAVAN KALYAN43VC18ME435PAVITHRA K43VC18ME441SAGAR MP43VC18ME443SAMPATH KUMAR Y<br>M53VC18ME444SANTOSH G43VC18ME445THIPPESWAMY B53VC18ME454THIPPESWAMY R53VC18ME455THIPPESWAMY R53VC18ME456VISIDHI VINAYAKA53VC18ME457V SIDDHI VINAYAKA53VC18ME460VISHWANATH H43VC18ME461COWDA K53VC18ME462VYSHNAVI53VC18ME464YESHWANTH D53VC18ME464YESHWANTH D5 | 3VC18ME415K VINAY KUMAR453VC18ME418KIRAN KUMAR D453VC18ME420KUMAR K543VC18ME423MADHUSUDHAN B453VC18ME424MAHANTESH H M543VC18ME425MANIKANTA K453VC18ME431MULLA ALTAF<br>HUSSAIN553VC18ME433NISAR AHAMED K M543VC18ME434G PAVAN KALYAN453VC18ME435PAVITHRA K443VC18ME441SAGAR MP453VC18ME443SAMPATH KUMAR Y<br>M543VC18ME444SANTOSH G443VC18ME445THIPPESWAMY B553VC18ME455THIPPESWAMY B553VC18ME454THIPPESWAMY R553VC18ME459VINOD KUMAR B553VC18ME460VISHWANATH H453VC18ME461VISHWANATH B553VC18ME462VYSHNAVI553VC18ME464YESHWANTH D553VC18ME464YESHWANTH D553VC18ME464YESHWANTH D553VC18ME464YESHWANTH D553VC17ME425S MUSHTAQ AHMED55 | 3VC18ME415K VINAY KUMAR4553VC18ME418KIRAN KUMAR D4543VC18ME420KUMAR K5453VC18ME421MADHUSUDHAN B4553VC18ME422MAHANTESH H M5453VC18ME425MANIKANTA K4543VC18ME431MULLA ALTAF<br>HUSSAIN5553VC18ME433NISAR AHAMED K M5453VC18ME434G PAVAN KALYAN4553VC18ME435PAVITHRA K4453VC18ME441SAGAR MP4543VC18ME443SAMPATH KUMAR Y<br>M5453VC18ME444SANTOSH G4453VC18ME445SHIVA SHANKAR<br>ADUR5553VC18ME445THIPPESWAMY B5553VC18ME457V SIDDHI VINAYAKA5553VC18ME459VINOD KUMAR B5553VC18ME460VISHWANTH<br>GOWDA K5553VC18ME461VISHWANTH<br>GOWDA K5553VC18ME464VISHWANTH D5553VC18ME464VISHWANTH D5553VC18ME464VISHWANTH D5553VC18ME464VISHWANTH D5553VC18ME464VISHNAVI5553VC18ME464VISHWANTH D555 | 3VC18ME415         K VINAY KUMAR         4         5         5           3VC18ME418         KIRAN KUMAR D         4         5         4         5           3VC18ME420         KUMAR K         5         4         5         4           3VC18ME420         KUMAR K         5         4         5         4           3VC18ME420         MADHUSUDHAN B         4         5         5         4           3VC18ME424         MAHANTESH H M         5         4         5         4           3VC18ME425         MANIKANTA K         4         5         4         4           3VC18ME431         MULLA ALTAF         5         5         5         5           3VC18ME433         NISAR AHAMED K M         5         4         4         5         5           3VC18ME434         G PAVAN KALYAN         4         5         5         4           3VC18ME443         SAGAR MP         4         4         5         5           3VC18ME443         SAMPATH KUMAR Y         5         4         4         4           3VC18ME444         SANTOSH G         4         4         5         5           3VC18ME445         THIPPSWAMY R |





### COURSE SELF ASSESSMENT REPORT

| R NO. | USN        | STUDENT NAME                       | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 |
|-------|------------|------------------------------------|----|----|----|----|----|----|----|----|----|-----|
| A-1   | 3VC16ME007 | ABHISHEK SINHA                     | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-2   | 3VC17ME001 | AJAY REDDY N                       | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-3   | 3VC17ME002 | AKASHA GOUDA H                     | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-4   | 3VC17ME003 | ANIL KITTUR                        | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-5   | 3VC17ME004 | BHARATHISHA A B                    | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-6   | 3VC17ME005 | BHARGHAV R                         | 5  | 5  | 5  | 5  | 5  | 4  | 5  | 5  | 5  | 5   |
| A-7   | 3VC17ME006 | C ESHWAR                           | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-8   | 3VC17ME007 | DEEPAK PATIL S R                   | 5  | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-9   | 3VC17ME008 | DODDA BASAVA B                     | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-10  | 3VC17ME009 | DURJAYA K B                        | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-11  | 3VC17ME010 | EARESH VARMA C                     | 5  | 5  | 5  | 5  | 5  | 4  | 5  | 5  | 5  | 5   |
| A-12  | 3VC17ME012 | ERANAGOUDA K M                     | 5  | 5  | 5  | 5  | 5  | 5  | 4  | 5  | 5  | 5   |
| A-13  | 3VC17ME014 | G RANJITH                          | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 4  | 5  | 5   |
| A-14  | 3VC17ME016 | G S SREE HARSHA                    | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-15  | 3VC17ME018 | GANESH GOWDA M                     | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-16  | 3VC17ME019 | GANESH J                           | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-17  | 3VC17ME020 | GURUSIDDANA<br>GOUDA B             | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 4  | 5  | 5   |
| A-18  | 3VC17ME021 | HAMPANNA                           | 5  | 5  | 5  | 5  | 3  | 5  | 5  | 5  | 5  | 5   |
| A-19  | 3VC17ME022 | HANUMESH                           | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-20  | 3VC17ME023 | JAFERSADIQ M ABDUL<br>KHADER BASHA | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-21  | 3VC17ME024 | JAGADEESH                          | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-22  | 3VC17ME025 | JEFFREY SUJAN<br>KUMAR K           | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 3  | 5   |
| A-23  | 3VC17ME027 | KADUBURU MATH<br>PARIKSHITH        | 5  | 5  | 5  | 5  | 4  | 4  | 5  | 5  | 5  | 5   |
| A-24  | 3VC17ME028 | KAISARAHMED D                      | 5  | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-25  | 3VC17ME029 | KARTHIK KUMAR D                    | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-26  | 3VC17ME030 | KARTHIK R B                        | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-27  | 3VC17ME031 | KIRAN MATH                         | 5  | 5  | 4  | 4  | 3  | 5  | 5  | 5  | 5  | 5   |
| A-28  | 3VC17ME032 | LOKESHA NAIK                       | 3  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 4   |
| A-29  | 3VC17ME033 | M CHAITANYA                        | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-30  | 3VC17ME041 | MOHAMMED AZAM J                    | 5  | 5  | 5  | 3  | 5  | 3  | 5  | 4  | 4  | 4   |
| A-31  | 3VC17ME043 | MOHAN E                            | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-32  | 3VC17ME046 | NAVEEN SURAGOUNI                   | 5  | 5  | 5  | 3  | 3  | 5  | 3  | 5  | 5  | 5   |
| A-33  | 3VC17ME049 | PAVAN KUMAR B                      | 5  | 5  | 5  | 5  | 5  | 3  | 5  | 4  | 3  | 4   |
| A-34  | 3VC17ME054 | PAVITHRA R                         | 4  | 5  | 5  | 4  | 5  | 5  | 5  | 5  | 5  | 5   |
| A-35  | 3VC17ME081 | VINAY KUMAR S                      | 5  | 5  | 5  | 5  | 5  | 3  | 5  | 3  | 5  | 5   |
| A-36  | 3VC18ME401 | ANAND K R                          | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 3  | 5   |
| A-37  | 3VC18ME402 | ANIL KUMAR V                       | 5  | 5  | 5  | 3  | 4  | 5  | 5  | 3  | 5  | 5   |
| A-38  | 3VC18ME411 | H M UDAY KUMAR                     | 5  | 5  | 5  | 3  | 5  | 5  | 5  | 5  | 5  | 5   |
|       |            |                                    |    |    |    |    |    |    |    |    |    |     |

# Tele spare wat

# RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering



| allone t | -          | i I                           |   | 1 | 1 |   |   | 1 |   |   |   | all a |
|----------|------------|-------------------------------|---|---|---|---|---|---|---|---|---|-------|
| A-39     | 3VC18ME413 | IMRAN ABDUL<br>WAHEED BELGUMI | 5 | 5 | 5 | 4 | 5 | 3 | 4 | 5 | 5 | 5     |
| A-40     | 3VC18ME415 | K VINAY KUMAR                 | 4 | 4 | 5 | 4 | 5 | 5 | 4 | 3 | 3 | 5     |
| A-41     | 3VC18ME418 | KIRAN KUMAR D                 | 5 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 3 | 5     |
| A-42     | 3VC18ME420 | KUMAR K                       | 5 | 5 | 5 | 3 | 4 | 5 | 5 | 4 | 4 | 5     |
| A-43     | 3VC18ME423 | MADHUSUDHAN B                 | 5 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 5 | 5     |
| A-44     | 3VC18ME424 | MAHANTESH H M                 | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 5 | 4 | 5     |
| A-45     | 3VC18ME425 | MANIKANTA K                   | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5     |
| A-46     | 3VC18ME431 | MULLA ALTAF<br>HUSSAIN        | 5 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 5     |
| A-47     | 3VC18ME433 | NISAR AHAMED K M              | 5 | 4 | 5 | 4 | 5 | 4 | 5 | 4 | 5 | 4     |
| A-48     | 3VC18ME434 | G PAVAN KALYAN                | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | 5 | 5     |
| A-49     | 3VC18ME435 | PAVITHRA K                    | 5 | 4 | 5 | 4 | 4 | 4 | 5 | 5 | 4 | 5     |
| A-50     | 3VC18ME441 | SAGAR MP                      | 4 | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 5     |
| A-51     | 3VC18ME443 | SAMPATH KUMAR Y M             | 5 | 5 | 5 | 4 | 4 | 5 | 4 | 5 | 4 | 5     |
| A-52     | 3VC18ME444 | SANTOSH G                     | 5 | 5 | 5 | 5 | 5 | 4 | 5 | 4 | 5 | 4     |
| A-53     | 3VC18ME446 | K SHIVA KUMAR                 | 5 | 5 | 5 | 4 | 5 | 4 | 4 | 5 | 4 | 5     |
| A-54     | 3VC18ME449 | SHIVA SHANKAR<br>ADUR         | 5 | 4 | 5 | 4 | 5 | 5 | 5 | 5 | 4 | 5     |
| A-55     | 3VC18ME454 | THIPPESWAMY B                 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5     |
| A-56     | 3VC18ME455 | THIPPESWAMY R                 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5     |
| A-57     | 3VC18ME457 | V SIDDHI VINAYAKA             | 5 | 5 | 5 | 4 | 3 | 5 | 5 | 5 | 5 | 5     |
| A-58     | 3VC18ME459 | VINOD KUMAR B                 | 5 | 5 | 4 | 4 | 5 | 4 | 3 | 5 | 5 | 5     |
| A-59     | 3VC18ME460 | VISHWANATH H                  | 4 | 5 | 5 | 4 | 3 | 5 | 4 | 3 | 4 | 5     |
| A-60     | 3VC18ME461 | VISHWANATH GOWDA<br>K         | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 5     |
| A-61     | 3VC18ME462 | VYSHNAVI                      | 5 | 5 | 5 | 4 | 3 | 5 | 5 | 5 | 5 | 5     |
| A-62     | 3VC18ME464 | YESHWANTH D                   | 5 | 5 | 4 | 4 | 5 | 4 | 3 | 5 | 5 | 5     |
| A-63     | 3VC17ME425 | S MUSHTAQ AHMED               | 4 | 5 | 5 | 4 | 3 | 5 | 4 | 3 | 4 | 5     |





# FINAL RESULT ANALYSIS

### TURBO MACHINE 2019-20

| Statics of Main Exam              |                       |                        |  |  |  |  |  |  |
|-----------------------------------|-----------------------|------------------------|--|--|--|--|--|--|
| Range of Marks Scored by Students |                       |                        |  |  |  |  |  |  |
| Marks range                       | Number of<br>Students | Percentage of Students |  |  |  |  |  |  |
| 0 to 25                           | 0                     | 0                      |  |  |  |  |  |  |
| 25 to 35                          | 1                     | 2                      |  |  |  |  |  |  |
| 35 to 45                          | 10                    | 20                     |  |  |  |  |  |  |
| 45 to 60                          | 17                    | 35                     |  |  |  |  |  |  |
| 60 to 100                         | 21                    | 43                     |  |  |  |  |  |  |
| Total Number of Students          |                       | 49                     |  |  |  |  |  |  |











### TURBO MACHINE 2019-20

| Statics of Final IA + Main Exam   |                       |                           |  |  |  |  |  |  |
|-----------------------------------|-----------------------|---------------------------|--|--|--|--|--|--|
| Range of Marks Scored by Students |                       |                           |  |  |  |  |  |  |
| Marks range                       | Number of<br>Students | Percentage<br>of Students |  |  |  |  |  |  |
|                                   | 49                    | 78                        |  |  |  |  |  |  |
| 0 to 49                           | 8                     | 13                        |  |  |  |  |  |  |
| 50 to 62                          | Ŭ                     |                           |  |  |  |  |  |  |
| 62 to 75                          | 2                     | 3                         |  |  |  |  |  |  |
| 75 to 87                          | 4                     | 6                         |  |  |  |  |  |  |
| 87 to 125                         | 0                     | 0                         |  |  |  |  |  |  |
| Total Number of Students          |                       | 63                        |  |  |  |  |  |  |











### RAO BAHADUR Y. MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI Department of Mechanical Engineering DIRECT & INDIRECT ATTAINMENT OF COs, POs, PSOs 2019-20



### RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI DEPARTMENT OF MECHANICAL ENGNEERING

**DIRECT ATTAINMENT 2019-20** 

| Faculty: | DR MANJUNATHA KONDEKAL                                               | Code: 17C303       |
|----------|----------------------------------------------------------------------|--------------------|
| Subject: | TURBOMACHINES                                                        |                    |
| SEM:     | V                                                                    | SEC: A             |
|          | COURSE OUTCOME STATEMEN                                              | T                  |
| 17C303.1 | Understand the basic quantities related to power absorbing and ge    | merating machines. |
| 17C303.2 | Comprehend thermodynamic relations applied to turbo machines.        |                    |
| 17C303.3 | Analyse the performance of steam turbines.                           |                    |
| 17C303.4 | Evaluate the work interactions and characteristics of hydraulic turb | bines.             |
| 17C303.5 | Intrepret the working of pumps and compressors.                      |                    |
|          |                                                                      |                    |

|          | CO-PO/PSO Mapping |      |      |      |      |      |      |      |      |       |       |       |       |       |
|----------|-------------------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|
|          | PO 1              | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 |
| 17C303.1 | 3                 | 3    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 0     |
| 17C303.2 | 3                 | 3    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 0     |
| 17C303.3 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |
| 17C303.4 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |
| 17C303.5 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |

|          | %CO   | TARGET |
|----------|-------|--------|
| 17C303.1 | 37.25 | 40     |
| 17C303.2 | 37.25 | 40     |
| 17C303.3 | 37.25 | 40     |
| 17C303.4 | 37.25 | 40     |
| 17C303.5 | 37.25 | 40     |









### RAO BAHADUR Y MAHABALESWARAPPA ENGINEERING COLLEGE, BALLARI DEPARTMENT OF MECHANICAL ENGNEERING

DIRECT AND INDIRECT ATTAINMENT 2019-20

| Faculty: DR MANJUNATHA KONDEKAL Code: 17C303 |                                                               |                          |   |  |  |  |
|----------------------------------------------|---------------------------------------------------------------|--------------------------|---|--|--|--|
| Subject:                                     | TURBOMACHINES                                                 |                          |   |  |  |  |
| SEM:                                         | V                                                             | SEC:                     | A |  |  |  |
|                                              | COURSE OUTCOME STATE                                          | MENT                     |   |  |  |  |
| 17C303.1                                     | Understand the basic quantities related to power absorbing a  | and generating machines. |   |  |  |  |
| 17C303.2                                     | Comprehend thermodynamic relations applied to turbo mach      | ines.                    |   |  |  |  |
| 17C303.3                                     | Analyse the performance of steam turbines.                    |                          |   |  |  |  |
| 17C303.4                                     | Evaluate the work interactions and characteristics of hydraul | ic turbines.             |   |  |  |  |
| 17C303.5                                     | Intrepret the working of pumps and compressors.               |                          |   |  |  |  |

|          | CO-PO/PSO Mapping |      |      |      |      |      |      |      |      |       |       |       |       |       |
|----------|-------------------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|
|          | PO 1              | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 |
| 17C303.1 | 3                 | 3    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 0     |
| 17C303.2 | 3                 | 3    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 0     |
| 17C303.3 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |
| 17C303.4 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |
| 17C303.5 | 3                 | 3    | 3    | 2    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 2     | 0     | 2     |

|          | %CO   | TARGET |
|----------|-------|--------|
| 17C303.1 | 46    | 40     |
| 17C303.2 | 45.76 | 40     |
| 17C303.3 | 45.83 | 40     |
| 17C303.4 | 45.82 | 40     |
| 17C303.5 | 45.75 | 40     |



|         | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | PSO 1 | PSO 2 |
|---------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|
| %PO ATT | 1.65 | 1.65 | 1.65 | 1.10 |      |      |      |      |      |       |       | 1.10  |       | 1.10  |
| TARGET  | 3    | 3    | 3    | 2    |      |      |      |      |      |       |       | 2     |       | 2     |







### CO ATTAINMENT GAP ANALYSIS 2019-20

| Course<br>Outcomes | CO Direct Attainment<br>=0.60(FE)+0.40(IA) | CO Target | CO Attainment<br>Gap |
|--------------------|--------------------------------------------|-----------|----------------------|
| 17C303.1           | 37.25                                      | 40        | 2.75                 |
| 17C303.2           | 37.25                                      | 40        | 2.75                 |
| 17C303.3           | 37.25                                      | 40        | 2.75                 |
| 17C303.4           | 37.25                                      | 40        | 2.75                 |
| 17C303.5           | 37.25                                      | 40        | 2.75                 |

### **ACTION REPORT ON GAP ANALYSIS**

| Course<br>Outcomes | Action proposed to bridge the gap          | Modification of target if achieved |
|--------------------|--------------------------------------------|------------------------------------|
|                    | Explained basics in depth to make students |                                    |
| 17C303.1           | understand the Turbo machine concepts      |                                    |
| 17(303.2           | Assignments given on Turbo machines and    |                                    |
| 170303.2           | problems                                   |                                    |
|                    | Solved many VTU question paper             |                                    |
| 17C303.3           | problems to students                       |                                    |
|                    | Concentrated on self learning              |                                    |
| 17C303.4           |                                            |                                    |
|                    | Asked students to present a topic as       |                                    |
| 17C303.5           | seminar                                    |                                    |